[DL4000] ExcelDye™ 6X DNA Loading Dye, Tri-color, 5 ml x 2
Facebook
X
Pinterest
Email
The ExcelDye™ 6× DNA Loading Dye (Tri-Color) is pre-mixed buffer for tracking the DNA sample during the electrophoresis on agarose or polyacrylamide gels. It contains three dyes (Xylene cyanol FF, Bromophenol blue, Orange G) for tracking the DNA migration. The Xylene cyanol FF, Bromophenol blue and Orange G migrate at approximately 800 bp, 150 bp and 30 bp on a standard 2% TAE agarose gel respectively (4,000 bp, 500 bp and 50 bp on 1% TAE agarose gel respectively). The included glycerol keeps the DNA at the bottom of the well and the presence of EDTA chelates divalent metal ions to prevent the process of metal-dependent nuclease.
Detail
Description
The ExcelDye™ 6× DNA Loading Dye (Tri-Color) is pre-mixed buffer for tracking the DNA sample during the electrophoresis on agarose or polyacrylamide gels. It contains three dyes (Xylene cyanol FF, Bromophenol blue, Orange G) for tracking the DNA migration. The Xylene cyanol FF, Bromophenol blue and Orange G migrate at approximately 800 bp, 150 bp and 30 bp on a standard 2% TAE agarose gel respectively (4,000 bp, 500 bp and 50 bp on 1% TAE agarose gel respectively). The included glycerol keeps the DNA at the bottom of the well and the presence of EDTA chelates divalent metal ions to prevent the process of metal-dependent nuclease.
Composition
0.03% Xylene cyanol FF
0.03% Bromophenol blue
0.15% Orange G
10 mM Tris-HCl (pH 8.0)
60% glycerol
60 mM EDTA
Storage
4°C for 12 months -20°C for 36 months
Other Products
[CC2102] Champion™ 21, 80 tubes (Region Limited)
Product Info
Document
Product Info
General information
Champion™ Competent Cells are chemically competent cells, which were prepared by SMOBIO to make E. coli perform excellent transformation efficiency. Standard transformation protocol is recommended for large plasmids or non-ampicillin selection. Time-saving transformation protocol is recommended for simple and rapid transformation. Champion™ Competent Cells are one of the fastest and simplest ready-to-use competent cell products in the world.
Kit contents
Champion™ Competent Cells
pUC19 Control Plasmid (5 μl, 10-4 μg/μl)
Champion™ Transformation Protocol Card
Shipping condition
Throughout the shipping process, the temperature is maintained under -70°C.
Storage and expiration
Champion™ Competent Cells must be stored between -70°C to -80°C. Subsequent freeze-thaw cycles will reduce transformation efficiency. If high efficiency is required for the experiment, do not use aliquots that have gone through several freeze-thaw cycles. The efficiency of Champion™ Competent Cells lasts for 1 year with proper storage.
Document
Champion™ Competent Cells are chemically competent cells, which were prepared by SMOBIO to make E. coli perform excellent transformation efficiency. Standard transformation protocol is recommended for large plasmids or non-ampicillin selection. Time-saving transformation protocol is recommended for simple and rapid transformation. Champion™ Competent Cells are one of the fastest and simplest ready-to-use competent cell products in the world.
Mucin 6 (MUC6) is a glycoprotein expressed in mucous neck cells, pyloric glands of the antrum, epigastric and bronchial epithelium, and in Müller ducts of the endocervix and urethral epithelium. Anti-MUC6 is useful for differentiating fetal, precancerous, and cancerous colonic mucosa from normal colon, as the antibody does not stain the latter. Anti-MUC6 stains the gastric epithelial surface of normal human gastrointestinal tract.
Double-Strand Specific dsDNase (dsDNase) is ideal for fast and effective removal of contaminating DNA from PCR master mixes.
Taq polymerases are commonly contaminated by bacterial DNA. This is a problem in PCR based bacterial typing and detection as it might cause false positive results. The unique properties of dsDNase make it suited for removal of contaminating DNA from PCR master mixes prior to addition of DNA template.
In figure 1, a PCR master mix was treated with different amounts of dsDNase before performing a qPCR to measure the contaminating bacterial DNA in the master mix. ArcticZymes dsDNase effectively removed contaminating DNA below known levels of the assay detection limits.
The dsDNase from Arctic shrimp (Pandalus borealis) is recombinantly produced in Pichia pastoris. It cleaves phosphodiester linkages in DNA to yield oligonucleotides with 5’-phosphate and 3’-hydroxyl termini.
The specific activity is estimated to be 30 times higher than that of bovine DNase I. In the presence of magnesium as only divalent cation and using oligos as a substrate, the activity towards dsDNA is 5000-fold higher than towards ssDNA.
The unique double strand-specificity allows specific degradation of dsDNA while leaving shorter ssDNA as primers and probes essentially intact. Easy inactivation by moderate heat (65°C) allows addition of DNA intended for analysis directly after removal of contaminating DNA.
Can be heat-inactivated by moderate heat treatment (65°C for 15 minutes)
Producing 5′-phospho-oligonucleotide products
Figures
Figure 1. The dsDNase effectively removes contaminated DNA
The dsDNase effectively removes contaminated DNA:
A PCR master mix was preincubated with various concentrations of dsDNase. After treatment, no DNA was amplified in non-template controls.
Properties
Specificity towards double-stranded DNA
Nucleic acid specificity has been tested towards double- and single-stranded DNA and RNA oligonucleotides. The specificity of dsDNase towards the substrate has been measured using 15-mer oligonucleotides with FAM at 5′ and DarkQuencher® 3′ (Eurogentec). The fluorescence is proportional to enzyme activity. Assay conditions: 25 mM Tris pH 7.5, 5 mM MgCl2, and 2 μM oligonucleotide.
Double-Strand Specific dsDNase (dsDNase) is ideal for fast and effective removal of contaminating DNA from PCR master mixes.
Taq polymerases are commonly contaminated by bacterial DNA. This is a problem in PCR based bacterial typing and detection as it might cause false positive results. The unique properties of dsDNase make it suited for removal of contaminating DNA from PCR master mixes prior to addition of DNA template.