To accommodate the need for high quality enzymes for isothermal amplification ArcticZymes developed the IsoPol® series of polymerases. For isothermal amplification at lower temperatures (37°C and below) we offer two enzymes, IsoPol® DNA Polymerase and IsoPol® SD+. Both enzymes exhibit excellent processivity and high strand displacement activity, having 5’-3’ polymerase activity while lacking both 3’-5’and 5’-3’ exonuclease activity.
Detail
OverView
To accommodate the need for high quality enzymes for isothermal amplification ArcticZymes developed the IsoPol® series of polymerases. For isothermal amplification at lower temperatures (37°C and below) we offer two enzymes, IsoPol® DNA Polymerase and IsoPol® SD+. Both enzymes exhibit excellent processivity and high strand displacement activity, having 5’-3’ polymerase activity while lacking both 3’-5’and 5’-3’ exonuclease activity.
IsoPol® SD+ is an engineered version of IsoPol® DNA Polymerase with even stronger strand displacement and higher salt tolerance.
Figures
Properties
Quality Control
ArcticZymes is dedicated to the quality of our products. IsoPol® polymerases are is manufactured at our ISO 13485 certified facility in Norway.
Other Products
aetokthonotoxin (AETX) qPCR Detection Kit (real-time PCR kit for the AetA gene)
Product Info
Document
Product Info
Real time qPCR kit for AetA gene
For screening aetokthonotoxin gene cluster
Use in combination with Attogene Algae DNA isolation kit
Not all cyanobacterial strains produce toxins. However, the toxin-producing strains cannot be distinguished from the nontoxin-producing strains by traditional light microscopy, commonlyused to monitor water bodies. An alternative for the differentiation of potentially toxic strains from nontoxic strains is to use molecular methods to detect the presence of toxin biosynthetic genes. Such methods are already available and could be used for the detection and identification of potential microcystin and nodularin producers present in environmental samples (Attogene catalog number NA2024).
Screening for the toxin itself, can be very costly. In turn, real time PCR for the detection of a gene region responsible for assembling in cyanobacterial strains and environmental samples can be a key indicator for the prescense of cyanobacteria capable of expressing the aetokthonotoxin toxin. Attogen has thus, designed primer pairs and probes targeting a the conserved gene region in order to enable the amplification and detection of several producer genera using real time PCR. Screening for the toxin genes can save significant costs and act as a triage for samples needing to be analyzed for the toxin itself.
Cyanobacterial neurotoxin aetokthonotoxin (AETX), a peculiar pentabrominated biindole alkaloid implicated in fatal Vacuolar Myelinopathy. This neurodegenerative disease was first recorded in 1994 during an outbreak of bald-eagle poisonings at De Gray Lake in Arkansas, USA. AETX was experimentally confirmed to be produced by the true branching heterocytous cyanobacterium Aetokthonos hydrillicola. The production of AETX is dependent on bromide (Br−) availability, and likely linked to its hyper-accumulation by the host plan. Thus regular monitoring of A. hydrillicola (accompanied by assessment of Br− and AETX levels) is highly advisable to predict the possible threat of further VM outbreaks.
The cyanobacterial AetA gene which encodes the unique FAD-dependent halogenase involved in the pathway for AETX synthesis has been adapted to develop a -aetokthonotoxin specific quantitative PCR (qPCR) assay.
Document
Real time qPCR kit for AetA gene
For screening aetokthonotoxin gene cluster
Use in combination with Attogene Algae DNA isolation kit
Nucleic acid testing (NAT) is the method of choice for detection and quantification of a wide range of micro organisms. Primerdesign manufactures and supplies high quality quantitative real-time PCR kits for the detection and simultaneous quantification of numerous significant pathogens . A copy number standard curve is provided for quantification and an the internal extraction template (DNA or RNA), controls for the quality of the nucleic acid extraction and eliminates false negative results.
The kit is designed with the broadest possible detection profile to ensure that all clinically relevant strains and subtypes are detected. Target sequences are selected by working with data from key opinion leaders in the field. Multiple sequence alignments and unprecedented real-time PCR expertise in design and validation ensure the best possible kit.
Details of the target and priming specificity are included in the individual handbooks above.
Packaged, optimised and ready to use. Expect Better Data.
Document
Exceptional value for money
Rapid detection of all clinically relevant subtypes
Positive copy number standard curve for quantification
Highly specific detection profile
High priming efficiency
Broad dynamic detection range (>6 logs)
Sensitive to < 100 copies of target
Accurate controls to confirm findings
50 & 150 reactions
MagZol Reagent is a reagent system for the isolation of total RNA from cells and tissues. The reagent, a single-phase solution consisting of phenol and guanidine isothiocyanate, is modification of the single-step RNA isolation method developed by Chomczynski and Sacchi. The sample is homogenized and lysed in MagZol Reagent which maintains the integrity of the RNA, while disrupting and denaturing endogenous RNases and other cellular components. Extraction of the lysate with chloroform further denatures proteins and separates the mixture into an organic and an aqueous phase. RNA remains exclusively in the aqueous phase, and is subsequently recovered by isopropanol.
This method is suitable for small quantities of tissue (<100mg) and cells (<5 X106), and large quantities of tissue (up to 1g) and cells (<108), of human, animal, plant, or bacterial origin. The simplicity of the MagZol Reagent method allows simultaneous processing of a large number of samples. The entire procedure can be completed in one hour. Total RNA prepared in this manner can be used for Northern blot analysis, dot blot hybridization, poly(A) + selection, in vitro translation, RNase protection assay, and molecular cloning. For use in amplification by thermal cycling, treatment of the isolated RNA with RNase-free DNase I is recommended when the two amplimers lie within a single exon.
Details
Specifications
Features
Specifications
Main Functions
RNA isolation solvent (substitution for Trizol/Qiazol reagent)
Applications
RT-PCR, Northern hybridization, poly (a) enrichment, etc.
Extensive – suitable for various kinds of biological samples, including animals, plants, cultured cells, bacteria, etc.
High yield – efficient cleavage releases more RNA
High purity – purified RNA is suitable for various downstream applications
Flexible – sample amount can be adjusted according to the demand
High cost performance compared with similar products
Storage and Stability
MagZol Reagent should be stored at 2-8°C upon arrival and is stable for at least 24 months under the condition. However, short-term storage (up to 12 weeks) at room temperature (15-25°C) does not affect its performance.
Experiment Data
Document
MagZol Reagent is a reagent system for the isolation of total RNA from cells and tissues. The reagent, a single-phase solution consisting of phenol and guanidine isothiocyanate, is modification of the single-step RNA isolation method developed by Chomczynski and Sacchi. The sample is homogenized and lysed in MagZol Reagent which maintains the integrity of the RNA, while disrupting and denaturing endogenous RNases and other cellular components. Extraction of the lysate with chloroform further denatures proteins and separates the mixture into an organic and an aqueous phase. RNA remains exclusively in the aqueous phase, and is subsequently recovered by isopropanol.