Propargyl-PEG14-t-butyl ester consists of a propargyl group and a t-butyl protected carboxyl group. The propargyl group can be used in copper catalyzed Click Chemistry to yield a stable triazole linkage with azides. The t-butyl group can be hydrolyzed in acidic conditions. The hydrophilic PEG units help the molecule to have better solubility in aqueous environment. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Detail
Propargyl-PEG14-t-butyl ester consists of a propargyl group and a t-butyl protected carboxyl group. The propargyl group can be used in copper catalyzed Click Chemistry to yield a stable triazole linkage with azides. The t-butyl group can be hydrolyzed in acidic conditions. The hydrophilic PEG units help the molecule to have better solubility in aqueous environment. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Other Products
N-Boc-N-bis(PEG4-Propargyl)
Product Info
Document
Product Info
N-Boc-N-bis(PEG4-Propargyl) is a bifunctional PEG compound containing two terminal alkynes that are combined together at a Boc-protected secondary amine. Terminal alkynes are most commonly used in copper click chemistry with azides to form stable triazoles with the target molecule. The secondary amine may be deprotected under acidic conditions to allow for alkylation at that position, increasing the molecule’s structural complexity. The use of a central amine also allows for hydrogen bonding, further increasing this compound’s water solubility.
Document
N-Boc-N-bis(PEG4-Propargyl) is a bifunctional PEG compound containing two terminal alkynes that are combined together at a Boc-protected secondary amine. Terminal alkynes are most commonly used in copper click chemistry with azides to form stable triazoles with the target molecule. The secondary amine may be deprotected under acidic conditions to allow for alkylation at that position, increasing the molecule’s structural complexity. The use of a central amine also allows for hydrogen bonding, further increasing this compound’s water solubility.
Magen’s HiPure columns are prepared by high quality glass fiber filter membrane as raw materials through membrane cutting, membrane release, ring release, ring pressing, gland, weighing and other processes. HiPure nucleic acid adsorption columns have the characteristics of long-term stability and high binding capacity. Experiments show that the highest binding capacity and binding efficiency of HiPure nucleic acid adsorption columns are basically unchanged when stored at room temperature for 4 years.
The series of nucleic acid columns produced by Magen Biotech are based on carefully selected imported glass fiber membranes (GF/B, GF/D, GF/F). Columns production processes such as polypropylene injection molding materials, injection molding process, and downstream membrane packing and compression rings are strictly controlled. This is to ensure that the column has extremely high adsorption capacity and long-term stability. Compared with conventional products on the market, Magen’s columns are with varieties, and binding rate will not change when stored at room temperature for 4 years.
Details
Specifications
Features
Specifications
Recommended application
Small amounts of nucleic acid isolation, viral nucleic acid from cell free samples
Preservation conditions
Room temperature
Stability
Up to 4 years
Filter membrane
High quality glass fiber filter GF/F, 2 layers
Membrane aperture
0.7μm
Maximum binding yield of plasmid
30 μg
Maximum yield of alcohol mediated Binding
100 μg
Single liquid carrying capacity of column
900 μl
Minimum elution volume
80 μl
Withstand centrifugal force
5,000 x g
Centrifuge
Low speed centrifuge, Swing out Rotor, can placed a height of 6.5cm square, (height of HiPure DNA Plate & 1.6ml Collection Plate: height, 6.2cm)
Adsorption Mechanism
Based on the negatively charged DNA skeleton, it has a high affinity for positively charged glass fibers. In high salt and ethanol solutions, DNA/RNA binds to glass fiber and interacts with hydrophilic matrix on silica through hydrogen bond. DNA/RNA is tightly bound. All pollutants can be removed by washing solution. At high salt concentration, nucleic acids selectively bind to silica gel membrane, while other pollutants, mainly proteins, are removed by membrane washing.
Ordering information
CAT.No.
Product Name
Package
C13130
HiPure DNA Plate (2 x GF/F)with 1.6ml Collection Plate
10/Bag
Purchase Guide
Item No.
Product Name
Membrane type/number of layers
Collection tubes
Plasmid DNA binding capacity (Physical adsorption)
Note: GF/B pore size is for 1.0μM glass fiber membrane; GF/F pore size is for 0.7μm glass fiber membrane.
Document
Magen’s HiPure columns are prepared by high quality glass fiber filter membrane as raw materials through membrane cutting, membrane release, ring release, ring pressing, gland, weighing and other processes. HiPure nucleic acid adsorption columns have the characteristics of long-term stability and high binding capacity. Experiments show that the highest binding capacity and binding efficiency of HiPure nucleic acid adsorption columns are basically unchanged when stored at room temperature for 4 years.
The 16S V1-V2 Library Preparation Kit for Illumina consists of the reagents and components required for library preparation of the 16S V1-V2 amplicon libraries to be used for next-generation sequencing on Illumina platforms. All molecular reagents including primers, enzyme mixes, indexes, and buffers are provided. Instructions for PCR clean up with the AMPure XP Magnetic Beads (supplied by customer) are also included for rapid purification of nucleic acid products generated at two steps of the workflow. The library prep workflow could be used for purified DNA inputs from different sources including stool, soil, water, saliva, plant, urine, skin swab, vaginal swab, cheek swab, nasal swab, plasma/serum, tongue swab, gum swab, and others.
The 16S V1-V2 Library Preparation Kit for Illumina has a streamlined procedure that reduces the handling time such that the library prep procedure can be completed in approximately 4 hours (see diagram below). Input DNA is first subjected to targeted PCR to amplify the V1-V2 region of the DNA encoding 16S rRNA. The post-PCR reaction is then cleaned up using AMPure XP beads. Dual index primers are then added using a limited-cycle PCR. The indexed amplicons flanked by 5′ and 3′ barcoded adaptors are then cleaned using AMPure XP beads. The libraries are then ready for quantification, pooling and sequencing.
Storage Conditions and Product Stability Norgen’s 16S V1-V2 Library Prep Kit for Illumina is shipped as one kit box (for the 24 prep kit) or two sub-component kits (for the 96 prep kit). All kits should be stored at -20°C upon arrival.
All kit components should remain stable for at least 1 year when stored at the specified storage conditions.