Soil samples contain a large number of microorganisms, the vast majority of which can not be directly cultivated for reproduction and research. Extracting DNA from soil samples is the most effective method for studying soil microorganisms. At present, there are mainly direct and indirect methods for extracting microbial DNA from soil samples. The direct method refers to placing soil samples in the lysis solution, and using effective wall breaking methods to release all microbial DNA into the lysis solution, followed by separation and extraction, such as Zhou’s method. Indirect method refers to placing soil in a buffer, such as Buffer PBS, to separate microorganisms from the soil and then extract DNA. The indirect method can greatly reduce the impact of humic acids and heavy metal salts on DNA extraction in soil, but this method will lose many microorganisms and the resulting DNA is not the entire genome (metagenome) of the soil sample. Currently, few researchers have adopted this method. Extracting DNA directly from soil samples can maximize the likelihood of obtaining the entire genome, but this method faces the following issues:
1. Humic acid pollution. The soil, especially in forests and grasslands, is rich in humic acids. Humic acid is a series of organic molecules, some of which are very similar to nucleic acid molecules and difficult to remove during purification. Trace amounts of humic acid pollution can lead to downstream applications such as PCR and enzyme digestion failure.
2. Lysis method. Soil samples contain various microorganisms, such as bacteria and fungi. Gram positive bacteria and fungi both contain very thick bacterial walls, and effectively breaking down the cell walls of these microorganisms is crucial for extracting high-yield metagenomic DNA. Due to the complexity of soil samples, it is not feasible to use enzymatic methods (such as lysozyme, wall breaking enzyme, snail enzyme) or liquid nitrogen grinding, as the soil contains various metalions or inhibitory factors that inactive the digestive enzymes, or the presence of sand particles in the soil makes liquid nitrogen grinding difficult.
3. The DNA yield is difficult to control. Soil samples would have significant changes in the number and variety of microorganisms due to fertility, inferiority, high moisture content, dryness, or depth of sampling. In a small range of soil samples, the DNA content often varies by thousands of times. In addition, certain chemical components in soil, such as heavy metal salts and clay substances, can cause a decrease in DNA yield.
Magen’s HiPure Soil DNA Kits are currently the most optimized kit for soil DNA extraction. The kit adopts glass bead grinding method and thermal shock chemical wall breaking method, which can be carried out in the point vortex instrument without special bead grinding instrument, and is suitable for a wide range of laboratories. The Absorber Solution in the reagent kit is a humic acid adsorbent exclusively developed by Magen Company, which can efficiently remove various humic acid pollutants. In addition, an alcohol-free silica gel column purification method is also used to efficiently remove various soluble metal salts and other soluble inhibitory factors from the soil. The kit has successfully extracted from the following soil (partially based on customer feedback): soil from forests in nature reserves (30 to 40 years old forest soil with a surface layer of 30-50cm deciduous layer), mangrove soil, grasslands, farmland, seabed mud, sludge, mineral area soil, organic matter contaminated soil, pond mud, garbage mud, air conditioning pipeline deposits, etc.
This product allows rapid and reliable isolation of high-quality genomic DNA from various soil samples. Up to 500 mg soil samples can be processed in 60 minute. The system combines the reversible nucleic acid binding properties of HiPure matrix with the speed and versatilityof spin column technology to eliminate PCR inhibiting compounds such as humic acid from soil samples. Purified DNA is suitable for PCR, restriction digestion, and next-generation sequencing. There are no organic extractions thus reducing plastic waste and hands-on time to allow multiple samples to be processed in parallel.
Specifications
Features | Specifications |
Main Functions | Isolation DNA from 200-500mg soil sample |
Applications | PCR, southern blot and enzyme digestion, etc. |
Purification method | Mini spin column |
Purification technology | Silica technology |
Process method | Manual (centrifugation or vacuum) |
Sample type | Soil |
Sample amount | 200-500mg |
Elution volume | ≥30μl |
Time per run | ≤60 minutes |
Liquid carrying volume per column | 800μl |
Binding yield of column | 100μg |
Soil sample is homogenized and then treated in a specially formulated buffer containing detergent to lyse bacteria, yeast, and fungal samples. humic acid,proteins, polysaccharides, and other contaminants are removed using our proprietary Absorber Solution. Binding conditions are then adjusted and the sample is applied to a DNA Mini Column. Two rapid wash steps remove trace contaminants and pure DNA is eluted in low ionic strength buffer. Purified DNA can be directly used in downstream applications without the need for further purification.
Kit Contents
Contents | D314202 | D314203 |
Purification Times | 50 Preps | 250 Preps |
Hipure DNA Mini Columns II | 50 | 250 |
2ml Collection Tubes | 50 | 250 |
2ml Bead Tubes | 50 | 250 |
Buffer SOL | 60 ml | 250 ml |
Buffer SDS | 5 ml | 20 ml |
Buffer PS | 10 ml | 50 ml |
Absorber Solution | 10 ml | 50 ml |
Buffer GWP | 40 ml | 220 ml |
Buffer DW1 | 30 ml | 150 ml |
Buffer GW2* | 20 ml | 2 x 50 ml |
Buffer AE | 15 ml | 30 ml |
Storage and Stability
Absorber Solution should be stored at 2-8°C upon arrival. However, short-term storage (up to 24 weeks) at room temperature (15-25°C) does not affect their performance. The remaining kit components can be stored dry at room temperature (15-25°C) and are stable for at least 18 months under these conditions.
Experiment Data
Soil samples contain a large number of microorganisms, the vast majority of which can not be directly cultivated for reproduction and research. Extracting DNA from soil samples is the most effective method for studying soil microorganisms. At present, there are mainly direct and indirect methods for extracting microbial DNA from soil samples. The direct method refers to placing soil samples in the lysis solution, and using effective wall breaking methods to release all microbial DNA into the lysis solution, followed by separation and extraction, such as Zhou’s method. Indirect method refers to placing soil in a buffer, such as Buffer PBS, to separate microorganisms from the soil and then extract DNA. The indirect method can greatly reduce the impact of humic acids and heavy metal salts on DNA extraction in soil, but this method will lose many microorganisms and the resulting DNA is not the entire genome (metagenome) of the soil sample. Currently, few researchers have adopted this method. Extracting DNA directly from soil samples can maximize the likelihood of obtaining the entire genome, but this method faces the following issues:
Blood samples contain rich DNA, including mitochondrial DNA, genomic DNA, circulating DNA (mostly released into blood after tumor cell apoptosis) in white blood cells, as well as parasitic viral or microbial DNA. These DNA are important parameters in clinical testing or diagnosis, which are also valuable materials for medical research. There are three main issues with extracting DNA from blood samples:
1. The sample is highly infectious, posing great harm to operators and the environment.
2. The source of DNA is complex and aportion of the nucleic acid, such as viral DNA or free DNA, may be lost during the operation, leading to downstream detection failure;
3. Blood sample contains a large amount of impurities and inhibitory factors.
Currently there are many methods available for extracting DNA from whole blood samples, such as phenol chloroform extraction, salting out method, etc. However, these methods require pre-treatment of blood sample, which removes red blood cells and isolate white blood cells in the first step. Due to the requirement that it cannot inactivate or kill pathogens during the process of removing red blood cells, the waste liquid (red blood cell lysate) and consumables may be contaminated by pathogens and become infectious, posing a danger to the entire laboratory environment and operators. In addition, during the process of removing red blood cells, useful nucleic acid information such as viruses, microorganisms, or circulating DNA is also lost, leading to experiment or detection failures.
The HiPure Blood DNA Kits series provided by Magen Company uses silica gel column purification technology, which can directly lyse whole blood samples without the need for white blood cell separation. Whole blood samples are directly mixed with lysates and proteases, resulting in the inactivation of pathogens, greatly reducing the infectivity, environmental pollution, and the chance of operators being infected. Due to the direct lysis and digestion of samples, except lymphocyte DNA, other circulating DNA as well as DNA from viruses and microorganisms, can also be recovered.
This product provides fast and easy methods for purification of total DNA for reliable PCR and Southern blotting. Total DNA (e.g., genomic, viral, mitochondrial) can be purified from whole blood, tissue and culture cells.
Details
Specifications
Features | Specifications |
Main Functions | Isolation total DNA from 10ml blood and 1g tissue using Maxi column |
Applications | PCR, southern bolt and virus detection, etc |
Purification method | Maxi spin column |
Purification technology | Silica technology |
Process method | Manual (centrifugation or vacuum) |
Sample type | Tissue, cell, blood, saliva, swab, blood spot, semen and other clinical samples |
Sample amount | 3-10ml |
Elution volume | ≥700μl |
Time per run | ≤90 minutes |
Liquid carrying volume per column | 4ml |
Binding yield of column | 5mg |
This product is based on silica column purification. The sample is lysed and digested with lysate and protease, DNA is released into the lysate. Transfer to an adsorption column. Nucleic acid is adsorbed on the membrane, while protein is not adsorbed and is removed with filtration. After washing proteins and other impurities, Nucleic acid was finally eluted with low-salt buffer (10mm Tris, pH9.0, 0.5mm EDTA).
Kit Contents
Contents | D311502 | D311503 |
Purification Times | 10 | 50 |
HiPure gDNA Maxi Columns | 10 | 50 |
50ml Collection Tubes | 20 | 100 |
Buffer ATL | 120 ml | 550 ml |
Buffer AL | 120 ml | 2 x 300 ml |
Buffer GW1* | 53 ml | 220 ml |
Buffer GW2* | 25 ml | 110 ml |
RNase A | 40 mg | 180 ml |
Proteinase K | 120 mg | 540 mg |
Protease Dissolve Buffer | 12 ml | 50 ml |
Buffer AE | 30 ml | 120 ml |
Storage and Stability
Proteinase K, RNase A should be stored at 2-8°C upon arrival. However, short-term storage (up to 12 weeks) at room temperature (15-25°C) does not affect their performance. The remaining kit components can be stored at room temperature (15-25°C) and are stable for at least 18 months under these conditions.
Name | CAT NO | Sample amount | Leukocyte protocol* | Colum type | Elutio volume | Average yield | Time per run |
HiPure Blood DNA Mini Kit | D3111 | 10-200μl | 1ml | 2ml column | ≥20μl | 5-9μg/200μl | ≤30 minutes |
HiPure Tissue&Blood DNA Midi Kit | D3113 | 0.2-2ml | 10ml | 1.5ml column | ≥300μl | 20-40μg/1m | ≤80 minutes |
HiPure Tissue&Blood DNA Maxi Kit | D3115 | 3 -10ml | 10ml | 15ml column | ≥700μl | 20-40μg/1m | ≤90 minutes |
HiPure Tissue&Blood DNA 96 Kit | D3117 | 1-200μl | 1ml | 96 well plate | 3-8μg/200μl |
*Note:Leukocyte protocol can be used when large volume whole blood samples need to be processed. Whole blood was treated with red blood cell lysate, and white blood cells were obtained by centrifugation before extraction
Blood samples contain rich DNA, including mitochondrial DNA, genomic DNA, circulating DNA (mostly released into blood after tumor cell apoptosis) in white blood cells, as well as parasitic viral or microbial DNA. These DNA are important parameters in clinical testing or diagnosis, which are also valuable materials for medical research. There are three main issues with extracting DNA from blood samples:
Norgen’s EXTRAClean Cell Culture Media Exosome Purification and RNA Isolation Kits constitute all-in-one systems for the purification of exosomes and the subsequent isolation of RNA from different cell culture media sample volumes. The purification is based on spin column chromatography that employs Norgen’s proprietary resin. The EXTRAClean columns undergo stringent processing and rigorous quality control measures to minimize contamination traces, ensuring optimal results for sensitive applications such as NGS. The kit is designed to isolate all sizes of RNA, including microRNA. The kit provides a clear advantage over other available kits in that it does not require any special instrumentation, protein precipitation reagents, extension tubes, phenol/chloroform or protease treatments. Moreover, the kits allows the user to elute into flexible elution volumes ranging from 50 μL to 100 μL. The purified RNA is free from any protein-bound circulating RNA and is of the highest integrity. The purified RNA can be used in a number of downstream applications including real time PCR, Sequencing based applications, reverse transcription PCR, Northern blotting, RNase protection and primer extension, and expression array assays.
Figure 1 / 9
Click for expanded view
Sample Type | Cell-Free Cell Culture Media |
Sample Volume Range | 5 ml to 10 mL |
Size of RNA Purified | All sizes, including miRNA and small RNA (< 200 nt) |
Elution Volume | 50-100 μL |
Time to Complete 10 Purifications | 35-40 minutes |
Average Yields | Variable depending on specimen |
Storage Conditions and Product Stability
All buffers should be kept tightly sealed and stored at room temperature. This kit is stable for 2 years after the date of shipment. It is recommended to warm Lysis Buffer A for 20 minutes at 60°C if any salt precipitation is observed.
83, On-nut 88/2 Prawet Sub-district, Prawet District, Bangkok, 10250, Thailand
Tel : 081-875-1869 , 02-328-7179
Email : hej@a3p-scientific.com
Copyright © 2024 A3P Scientific Co., Ltd. All rights reserved. Web by Mountain Studio
Privacy Policy | Terms of Use | Site Map