PEG3-(Amino-Tri-(Propargyl-PEG2-ethoxymethyl)-methane)-(Amino-Tri-(endo-BCN-PEG2-ethoxymethyl)-methane) is reactive with azide-bearing compounds or biomolecules via copper catalyzed azide-alkyne Click Chemistry to yield a stable triazole linkage. The DBCO groups are commonly used for copper-free Click Chemistry reactions due to their strain promoted high energy. The hydrophilic PEG chain allows for increased water solubility.
PEG3-(Amino-Tri-(Propargyl-PEG2-ethoxymethyl)-methane)-(Amino-Tri-(endo-BCN-PEG2-ethoxymethyl)-methane) is reactive with azide-bearing compounds or biomolecules via copper catalyzed azide-alkyne Click Chemistry to yield a stable triazole linkage. The DBCO groups are commonly used for copper-free Click Chemistry reactions due to their strain promoted high energy. The hydrophilic PEG chain allows for increased water solubility.
Solid Phase Adsorption Toxin Tracking (SPATT) is a biomimetic in-situ water monitoring tool that falls under an expanding umbrella of passive samplers. It serves to warn researchers of toxin-producing harmful algal bloom (HAB) developments early on. It has been popularized through its affordability, ease of use, and its ability to capture ephemeral events in marine, brackish, and freshwater environments. Its uptake of contaminants has been shown to be more similar than other sampling methods to that of aquatic species like bivalves, mussels, and clams. It provides an average bioavailable fraction of a toxin over deployment time that can be used to determine an overall toxin risk to organisms. The sampling period typically depends on the bioactivity at a site, ranging from 24 hours to 4 weeks in most cases.
A SPATT passively absorbs and desorbs extracellular compounds over its stretch of time at a sampling site; in an organism, a toxin would go through biochemical detoxification processes. Passive samplers have a higher sensitivity for more compounds and provide improved stability and preservation of these compounds within the resin. SPATT devices capture less commonly detected cyanotoxins (e.g. cylindrospermopsin) at lower concentrations than that of a grab sample (collected at one point in time). Grab samples are limited in scope and sensitivity, and underrepresent toxins like microcystin-LR, which is picked up very reliably through SPATT technology.
Uses HP20 that is widely applicable for many toxins.
Used to capture:
Set of three Solid Phase Adsorption Toxin Tracking (SPATT) Bags
Pre activated
Ready for deployment
HP20
83, On-nut 88/2 Prawet Sub-district, Prawet District, Bangkok, 10250, Thailand
Tel : 081-875-1869 , 02-328-7179
Email : hej@a3p-scientific.com
Copyright © 2024 A3P Scientific Co., Ltd. All rights reserved. Web by Mountain Studio
Privacy Policy | Terms of Use | Site Map