[CK1000] Champion™ E. coli Transformation Kit, 200 Rxn
Facebook
X
Pinterest
Email
Champion™ E. coli Transformation Kit provides an easy method for rapid preparation of chemically competent cells with high transformation efficiency from fresh culture, overnight culture, or even directly from bacterial colonies on the plate. The competent cell preparation method eliminates the requirement of time-wasting wash step. In addition, preparation of competent cells from overnight culture or directly from bacterial colonies provides flexibility to cloning experiment. The resultant competent cells can be immediately used or stored at -70°C for one year. This kit includes a specialized SMO-Broth™ medium and a unique Champion™ CC Buffer for culturing and preparing competent cells efficiently. Following the simple and quick competent cell preparation protocol from fresh culture, the transformation efficiency is typically ranged from 108–109 cfu/μg transformants/μg of pUC19 plasmid DNA, but varies depending on the E. coli strains. The resultant competent cells can be further transformed using time-saving transformation protocol, eliminating the requirement of heat-shock and recovery steps.
Detail
Description
Champion™ E. coli Transformation Kit provides an easy method for rapid preparation of chemically competent cells with high transformation efficiency from fresh culture, overnight culture, or even directly from bacterial colonies on the plate. The competent cell preparation method eliminates the requirement of time-wasting wash step. In addition, preparation of competent cells from overnight culture or directly from bacterial colonies provides flexibility to cloning experiment. The resultant competent cells can be immediately used or stored at -70°C for one year. This kit includes a specialized SMO-Broth™ medium and a unique Champion™ CC Buffer for culturing and preparing competent cells efficiently. Following the simple and quick competent cell preparation protocol from fresh culture, the transformation efficiency is typically ranged from 108–109 cfu/μg transformants/μg of pUC19 plasmid DNA, but varies depending on the E. coli strains. The resultant competent cells can be further transformed using time-saving transformation protocol, eliminating the requirement of heat-shock and recovery steps.
Features
Flexible– fresh culture, overnight culture, 4°C stored liquid culture or even colonies on agar plate can be used for transformation.
Fast and Easy– only few steps for preparation; suitable for time-saving transformation
High efficiency– up to 109 cfu/μg
Personalization– suitable for most E. coli strains
Kit Contents
Component
Volume
Champion™ CC Buffer
20 ml
SMO-Broth™
100 ml x 2
pUC19 Control Plasmid (10-4 μg/μl)
5 µl
Instruction Manual
1
Champion™ Competent Cell Preparation Card
1
Storage
4°C for 12 months
Other Products
[DM2200] AccuBand™ 100 bp DNA Ladder II, 500 μl
Product Info
Document
Product Info
Description
AccuBand™ 100 bp DNA Ladder II is composed of 10 individual DNA fragments, presenting 1k, 900, 800, 700 600, 500, 400, 300, 200 and 100 bp sharp bands respectively. This product contains 1 enhanced band (500 bp) for easy identification of bands. AccuBand™ 100 bp DNA Ladder II is ready-to-use, containing loading buffer with dual color tracking dyes (orange G and Xylene cyanol FF). AccuBand™ 100 bp DNA Ladder II provides a sufficient amount of DNA for clear observation of all DNA bands ranging from 100 bp to 1 kb, either in agarose gel or in polyacrylamide gel electrophoresis.
Features
Sharp bands
Suitable for polyacrylamide gel electrophoresis
Quick reference— enhanced bands
Ready-to-use— premixed with loading dye for direct loading
Stable— room temperature storage over 6 months
Source
Phenol extracted PCR products and dsDNA digested with specific restriction enzymes, equilibrated in 10 mM Tris-HCl (pH 8.0) and 10 mM EDTA.
Range
100 ~ 1,000 bp
Concentration
50 µg/ 500 µl
Recommended loading volume
5 µl/ well
Storage
Room temperature for 6 months 4°C for 12 months -20°C for 36 months
Short term stability: 2-8oC, Long term stability: See individual component labels
Stability:
> 2 years under recommended storage conditions
Analyte:
Dietary Fiber
Assay Format:
Enzymatic
Detection Method:
Gravimetric/HPLC
Signal Response:
Increase
Limit of Detection:
0.5 g/100 g
Total Assay Time:
~ 3 h work (over 1-2 days)
Application examples:
Food ingredients, food products and other materials.
Method recognition:
AACC Method 32-60.01, AOAC Method 2022.01, AOAC Method 2017.16, ICC Standard Method No. 185 and CODEX Method Type I
The Rapid Integrated Total Dietary Fiber Assay Kit method is validated under collaborative study (AACC Method 32-60.01, AOAC Method 2022.01, AOAC Method 2017.16, ICC Standard No. 185) and is recognized as a Type I Method by CODEX Alimentarius. The K-RINTDF method is the recommended one for the measurement of total dietary fiber in all foods that may or may not contain resistant starch. This method is updated to be more consistent with in vivo conditions in the human small intestine, i.e. a 4 h incubation time. Under these conditions more accurate measurement of resistant starch is obtained, including phosphate cross-liked starch (RS4). Use of higher enzyme concentrations ensures that resistant maltodextrins produced from non-resistant starch under the incubation conditions of the Integrated Total Dietary Fiber procedure (AOAC Methods 2009.01 and 2011.25) are no longer produced.
In this improved, rapid method, the incubation time with PAA + AMG is reduced to 4 h and the levels of both PAA and AMG are increased to ensure that resistant starch levels obtained with a set of control samples are consistent with ileostomy data. Under these conditions, the DF values obtained for most samples are the same as those obtained with AOAC Methods 2009.01 and 2011.25.
The dietary fiber fractions that are measured with this method are:
1. High Molecular Weight Dietary Fiber (HMWDF) including Insoluble Dietary Fiber (IDF) and High Molecular Weight Soluble Dietary Fiber (SDFP; soluble dietary fiber which is precipitated in the presence of 78% aqueous ethanol), and
2. Low Molecular Weight Soluble Dietary Fiber (SDFS; water soluble dietary fiber that is soluble in the presence of 78% aqueous ethanol).
Alternatively, IDF, SDFP and SDFS can be measured separately.
The enzymes used in this method are high purity and effectively devoid of contaminating enzymes active on other dietary fiber components such as β-glucan, pectin and arabinoxylan. They are supplied as freeze-dried powders; allowing the use of glycerol as an internal standard in the method.
* See McCleary, B. V., Sloane, N & Draga, A. (2015). Determination of total dietary fibre and available carbohydrates: a rapid integrated procedure that simulates in vivo digestion. Starch/Starke, 66, 1-24.
Validation of Methods
Advantages
More rapid measurement – incubation time with PAA + AMG reduced to 4 h in comparison with AOAC 2009.01 (increased levels of enzyme employed)
DF values for most samples are very similar to those obtained with AOAC Method 2009.01
Rapid Integrated Total Dietary Fiber method removes all of the limitations that have been identified with AOAC Method 2009.01*
All reagents stable for > 2 years after preparation
The method is consistent with the CODEX Alimentarius definition of dietary fiber
Mega-Calc™ software tool is available from our website for hassle-free raw data processing
Very competitive price (cost per test)
Document
The Rapid Integrated Total Dietary Fiber Assay Kit method is validated under collaborative study (AACC Method 32-60.01, AOAC Method 2022.01, AOAC Method 2017.16, ICC Standard No. 185) and is recognized as a Type I Method by CODEX Alimentarius. The K-RINTDF method is the recommended one for the measurement of total dietary fiber in all foods that may or may not contain resistant starch. This method is updated to be more consistent with in vivo conditions in the human small intestine, i.e. a 4 h incubation time. Under these conditions more accurate measurement of resistant starch is obtained, including phosphate cross-liked starch (RS4). Use of higher enzyme concentrations ensures that resistant maltodextrins produced from non-resistant starch under the incubation conditions of the Integrated Total Dietary Fiber procedure (AOAC Methods 2009.01 and 2011.25) are no longer produced.