N-t-Boc-Aminooxy-PEG4-N-(PEG2-Propargyl) is a click chemistry crosslinker. The propargyl group is reactive with azide-containing compounds or biomolecules through copper catalyzed Click Chemistry to yield a stable triazole linkage. t-Boc-aminooxy can be deprotected under mild acidic conditions. The hydrophilic PEG linker improves solubility in aqueous media.
Detail
N-t-Boc-Aminooxy-PEG4-N-(PEG2-Propargyl) is a click chemistry crosslinker. The propargyl group is reactive with azide-containing compounds or biomolecules through copper catalyzed Click Chemistry to yield a stable triazole linkage. t-Boc-aminooxy can be deprotected under mild acidic conditions. The hydrophilic PEG linker improves solubility in aqueous media.
Other Products
D3142 HiPure Soil DNA Kit
Product Info
Document
Product Info
Introduction
Soil samples contain a large number of microorganisms, the vast majority of which can not be directly cultivated for reproduction and research. Extracting DNA from soil samples is the most effective method for studying soil microorganisms. At present, there are mainly direct and indirect methods for extracting microbial DNA from soil samples. The direct method refers to placing soil samples in the lysis solution, and using effective wall breaking methods to release all microbial DNA into the lysis solution, followed by separation and extraction, such as Zhou’s method. Indirect method refers to placing soil in a buffer, such as Buffer PBS, to separate microorganisms from the soil and then extract DNA. The indirect method can greatly reduce the impact of humic acids and heavy metal salts on DNA extraction in soil, but this method will lose many microorganisms and the resulting DNA is not the entire genome (metagenome) of the soil sample. Currently, few researchers have adopted this method. Extracting DNA directly from soil samples can maximize the likelihood of obtaining the entire genome, but this method faces the following issues:
1. Humic acid pollution. The soil, especially in forests and grasslands, is rich in humic acids. Humic acid is a series of organic molecules, some of which are very similar to nucleic acid molecules and difficult to remove during purification. Trace amounts of humic acid pollution can lead to downstream applications such as PCR and enzyme digestion failure.
2. Lysis method. Soil samples contain various microorganisms, such as bacteria and fungi. Gram positive bacteria and fungi both contain very thick bacterial walls, and effectively breaking down the cell walls of these microorganisms is crucial for extracting high-yield metagenomic DNA. Due to the complexity of soil samples, it is not feasible to use enzymatic methods (such as lysozyme, wall breaking enzyme, snail enzyme) or liquid nitrogen grinding, as the soil contains various metalions or inhibitory factors that inactive the digestive enzymes, or the presence of sand particles in the soil makes liquid nitrogen grinding difficult.
3. The DNA yield is difficult to control. Soil samples would have significant changes in the number and variety of microorganisms due to fertility, inferiority, high moisture content, dryness, or depth of sampling. In a small range of soil samples, the DNA content often varies by thousands of times. In addition, certain chemical components in soil, such as heavy metal salts and clay substances, can cause a decrease in DNA yield.
Magen’s HiPure Soil DNA Kits are currently the most optimized kit for soil DNA extraction. The kit adopts glass bead grinding method and thermal shock chemical wall breaking method, which can be carried out in the point vortex instrument without special bead grinding instrument, and is suitable for a wide range of laboratories. The Absorber Solution in the reagent kit is a humic acid adsorbent exclusively developed by Magen Company, which can efficiently remove various humic acid pollutants. In addition, an alcohol-free silica gel column purification method is also used to efficiently remove various soluble metal salts and other soluble inhibitory factors from the soil. The kit has successfully extracted from the following soil (partially based on customer feedback): soil from forests in nature reserves (30 to 40 years old forest soil with a surface layer of 30-50cm deciduous layer), mangrove soil, grasslands, farmland, seabed mud, sludge, mineral area soil, organic matter contaminated soil, pond mud, garbage mud, air conditioning pipeline deposits, etc.
This product allows rapid and reliable isolation of high-quality genomic DNA from various soil samples. Up to 500 mg soil samples can be processed in 60 minute. The system combines the reversible nucleic acid binding properties of HiPure matrix with the speed and versatilityof spin column technology to eliminate PCR inhibiting compounds such as humic acid from soil samples. Purified DNA is suitable for PCR, restriction digestion, and next-generation sequencing. There are no organic extractions thus reducing plastic waste and hands-on time to allow multiple samples to be processed in parallel.
Details
Specifications
Features
Specifications
Main Functions
Isolation DNA from 200-500mg soil sample
Applications
PCR, southern blot and enzyme digestion, etc.
Purification method
Mini spin column
Purification technology
Silica technology
Process method
Manual (centrifugation or vacuum)
Sample type
Soil
Sample amount
200-500mg
Elution volume
≥30μl
Time per run
≤60 minutes
Liquid carrying volume per column
800μl
Binding yield of column
100μg
Principle
Soil sample is homogenized and then treated in a specially formulated buffer containing detergent to lyse bacteria, yeast, and fungal samples. humic acid,proteins, polysaccharides, and other contaminants are removed using our proprietary Absorber Solution. Binding conditions are then adjusted and the sample is applied to a DNA Mini Column. Two rapid wash steps remove trace contaminants and pure DNA is eluted in low ionic strength buffer. Purified DNA can be directly used in downstream applications without the need for further purification.
Advantages
Fast – several samples can be extracted in 40 minutes (after digestion)
High purity – purified DNA can be directly used in various downstream applications
Good repeatability – silica technology can obtain ideal results every time
High recovery – DNA can be recovered at the level of PG
Kit Contents
Contents
D314202
D314203
Purification Times
50 Preps
250 Preps
Hipure DNA Mini Columns II
50
250
2ml Collection Tubes
50
250
2ml Bead Tubes
50
250
Buffer SOL
60 ml
250 ml
Buffer SDS
5 ml
20 ml
Buffer PS
10 ml
50 ml
Absorber Solution
10 ml
50 ml
Buffer GWP
40 ml
220 ml
Buffer DW1
30 ml
150 ml
Buffer GW2*
20 ml
2 x 50 ml
Buffer AE
15 ml
30 ml
Storage and Stability
Absorber Solution should be stored at 2-8°C upon arrival. However, short-term storage (up to 24 weeks) at room temperature (15-25°C) does not affect their performance. The remaining kit components can be stored dry at room temperature (15-25°C) and are stable for at least 18 months under these conditions.
Experiment Data
Document
Soil samples contain a large number of microorganisms, the vast majority of which can not be directly cultivated for reproduction and research. Extracting DNA from soil samples is the most effective method for studying soil microorganisms. At present, there are mainly direct and indirect methods for extracting microbial DNA from soil samples. The direct method refers to placing soil samples in the lysis solution, and using effective wall breaking methods to release all microbial DNA into the lysis solution, followed by separation and extraction, such as Zhou’s method. Indirect method refers to placing soil in a buffer, such as Buffer PBS, to separate microorganisms from the soil and then extract DNA. The indirect method can greatly reduce the impact of humic acids and heavy metal salts on DNA extraction in soil, but this method will lose many microorganisms and the resulting DNA is not the entire genome (metagenome) of the soil sample. Currently, few researchers have adopted this method. Extracting DNA directly from soil samples can maximize the likelihood of obtaining the entire genome, but this method faces the following issues:
Magen’s HiPure columns are prepared by high quality glass fiber filter membrane as raw materials through membrane cutting, membrane release, ring release, ring pressing, gland, weighing and other processes. HiPure nucleic acid adsorption columns have the characteristics of long-term stability and high binding capacity. Experiments show that the highest binding capacity and binding efficiency of HiPure nucleic acid adsorption columns are basically unchanged when stored at room temperature for 4 years.
The series of nucleic acid columns produced by Magen Biotech are based on carefully selected imported glass fiber membranes (GF/B, GF/D, GF/F). Columns production processes such as polypropylene injection molding materials, injection molding process, and downstream membrane packing and compression rings are strictly controlled. This is to ensure that the column has extremely high adsorption capacity and long-term stability. Compared with conventional products on the market, Magen’s columns are with varieties, and binding rate will not change when stored at room temperature for 4 years.
C13114 HiPure cfDNA Mini Column Set I (Centrifuge Method)
C13115 HiPure cfDNA Column Set Ⅱ (Vacuum Method)
Details
Specifications
Features
Specifications
Recommended application
Circulating or viral nucleic acid isolation from large volumes of cell free samples (1-5ml)
Preservation conditions
Room temperature
Stability
Up to 4 years
Filter membrane
High quality glass fiber filter GF/F, 4 layers (3 x GF/F, 1 x GF/B)
Membrane aperture
3 x 0.7μm, 1 x 1.0μm
Maximum binding yield of plasmid
30 μg
Maximum yield of alcohol mediated Binding
200 μg
Single liquid carrying capacity of column
800 μl
Minimum elution volume
30 μl
Withstand centrifugal force
16,000 x g
Centrifuge
Small high speed centrifuge (2ml)
Adsorption Mechanism
Based on the negatively charged DNA skeleton, it has a high affinity for positively charged glass fibers. In high salt and ethanol solutions, DNA/RNA binds to glass fiber and interacts with hydrophilic matrix on silica through hydrogen bond. DNA/RNA is tightly bound. All pollutants can be removed by washing solution. At high salt concentration, nucleic acids selectively bind to silica gel membrane, while other pollutants, mainly proteins, are removed by membrane washing.
Ordering information
CAT.No.
Product Name
Package
C13113
HiPure cfDNA Mini Column (3 x GF/F, 1 x GF/B)
100/Bag
C13114
HiPure cfDNA Mini Column (3 x GF/F, 1 x GF/B)with 50ml Centrifuge Tube, Extender Tube, Collection Tube, Collection Tube Ⅲ
100/Pack
C13115
HiPure cfDNA Mini Column (3 x GF/F, 1 x GF/B)with Collection Tubes, Extender Tube, Vac-Connector
100/Pack
C13301
Vac connector
100/Bag
C13302
Extender Tube
50/Bag
Purchase Guide
Item No.
Product Name
Membrane type/number of layers
Collection tubes
Plasmid DNA binding capacity (Physical adsorption)
Note: GF/B pore size is for 1.0μM glass fiber membrane; GF/F pore size is for 0.7μm glass fiber membrane.
Document
Magen’s HiPure columns are prepared by high quality glass fiber filter membrane as raw materials through membrane cutting, membrane release, ring release, ring pressing, gland, weighing and other processes. HiPure nucleic acid adsorption columns have the characteristics of long-term stability and high binding capacity. Experiments show that the highest binding capacity and binding efficiency of HiPure nucleic acid adsorption columns are basically unchanged when stored at room temperature for 4 years.
Contains 6 Controls: Use with K-TDFR, K-INTDF or K-RINTDF
Content:
Contains 6 Controls: Use with K-TDFR, K-INTDF or K-RINTDF
Shipping Temperature:
Ambient
Storage Temperature:
Short term stability: Ambient, Long term stability: See individual component labels
Stability:
> 2 years under recommended storage conditions
Analyte:
Dietary Fiber
For use with the Total Dietary Fiber Assay Kit. Contains barley β-glucan, high amylose maize starch, wheat starch, casein, pectin and larch galactan. Wheat arabinoxylan is available on request.
For use with the Total Dietary Fiber Assay Kit. Contains barley β-glucan, high amylose maize starch, wheat starch, casein, pectin and larch galactan. Wheat arabinoxylan is available on request.