Description
Q-PAGE™ TGN (Tris-Glycine Novel) Precast Gels are ready-to-use acrylamide gels for SDS-PAGE running in Tris-Glycine buffer system. With unique formula, Q-PAGE™ TGN Precast Gels perform enhanced speed, better separation, and longer shelf life as compared with conventional Laemmli Tris-HCl gels. The protein migration patterns in Q-PAGE™ TGN series, however, are similar with typical Laemmli Tris-HCl gels, and thus Q-PAGE™ TGN Precast Gels are compatible to traditional SDS-PAGE and subsequent analyses.
Q-PAGE™ TGN Precast Gels are available in gradient (4 to 15%) and fixed (10%) concentrations of polyacrylamide in 12- and 15-well formats. Two available cassette sizes, Mini (10 x 8.3 cm) and Midi (10 x 10 cm), are compatible with most popular protein electrophoresis systems. Q-PAGE™ Mini (QP4XXX) Gels are suitable for Bio-Rad® and other systems. Q-PAGE™ Midi (QP5XXX) Gels are suitable for Invitrogen® XCell SureLock® Mini-Cell, Invitrogen® Mini Gel Tank, Hoefer SE260, and other systems.
Key Features
Storage and stability
Store Q-PAGE™ Precast Gels at 4°C for periods up to 12 months.
Do not freeze Q-PAGE™ Precast Gels. Remove tape and comb before electrophoresis.
Keep Q-PAGE™ Precast Gels flat during storage.
Q-PAGE™ TGN (Tris-Glycine Novel) Precast Gels are ready-to-use acrylamide gels for SDS-PAGE running in Tris-Glycine buffer system. With unique formula, Q-PAGE™ TGN Precast Gels perform enhanced speed, better separation, and longer shelf life as compared with conventional Laemmli Tris-HCl gels. The protein migration patterns in Q-PAGE™ TGN series, however, are similar with typical Laemmli Tris-HCl gels, and thus Q-PAGE™ TGN Precast Gels are compatible to traditional SDS-PAGE and subsequent analyses.
The amount of RNA that can be extracted from different biological or clinical samples varies greatly. For example, while a few micrograms of RNA could be easily purified from tissues and cells in excess amounts (such as from a few milligrams of tissue), many liquid biopsy samples may yield very low amounts of RNA. In fact, samples such as urine or plasma may yield 1 – 100 ng or less RNA per 100 µL of sample. Such a range of RNA quantity is often below the detection limit of most commonly used techniques for measuring RNA including nano-spectrophotometry and fluorescent nucleic acid stains. As a result, without properly determined RNA concentration, it becomes very difficult to normalize the starting quantity of RNA used in gene expression studies.
Norgen’s microRNA (cel-miR-39) Spike-In Kit offers a quantified synthetic RNA (cel-miR-39) for spike-in during RNA extraction procedures and subsequent normalization in RT-qPCR assays. The amount of cel-miR-39 RNA recovered after RNA extraction is directly correlated with the amount of total RNA recovered. After reverse transcription (such as with Norgen’s microScript Reverse Transcription system) of the sample RNA (with spike-in), the level of cel-miR-39 can be determined by subjecting the cDNA generated to quantitative PCR (qPCR) using fluorescent nucleic acid stains such as SYBR Green. A cel-miR-39 specific primer is included in the kit. The level of expression of any target transcripts in different RNA samples can now be normalized to the cel-miR-39 transcript level using standard method such as ∆∆Ct relative quantification.
In addition, the cel-miR-39 RNA is compatible to library preparation methods (including ligation-based protocols) in Next Generation Sequencing (Small RNA-Seq) workflows. The cel-miR-39 RNA could be used for normalization as well as for tracking library construction efficiency.
Figure 1 / 2
Click for expanded view
Storage Conditions
Upon receipt, store Norgen’s microRNA (cel-miR-39) Spike-In Kit at -20°C or lower. Avoid multiple freeze-thaw cycles. If needed, prepare smaller working aliquots and store at -20°C or lower.
Component | Cat. 59000 |
---|---|
cel-miR-39 RNA | 10 pmol |
cel-miR-39 Forward PCR Primer | 1 nmol |
Nuclease-Free Water | 1.25 mL |
Product Insert | 1 |