Bis-propargyl-PEG6 has two propargyl groups which can participate in Click Chemistry reactions to yield a stable triazole linkage with azide compounds; copper is needed as a catalyst. The 6 units of PEG increase the hydrophilicity of the compound. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Detail
Bis-propargyl-PEG6 has two propargyl groups which can participate in Click Chemistry reactions to yield a stable triazole linkage with azide compounds; copper is needed as a catalyst. The 6 units of PEG increase the hydrophilicity of the compound. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Other Products
DBCO-PEG1-acid
Product Info
Document
Product Info
DBCO-PEG1-acid is an analog of DBCO-Acid with hydrophilic PEG linker and a DBCO group. The DBCO groups is commonly used for Click Chemistry reactions. The hydrophilic PEG chain allows for increased water solubility of compounds in aqueous media. The terminal carboxylic acid can react with primary amine groups in the presence of activators (e.g. EDC, or HATU) to form a stable amide bond. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Document
DBCO-PEG1-acid is an analog of DBCO-Acid with hydrophilic PEG linker and a DBCO group. The DBCO groups is commonly used for Click Chemistry reactions. The hydrophilic PEG chain allows for increased water solubility of compounds in aqueous media. The terminal carboxylic acid can react with primary amine groups in the presence of activators (e.g. EDC, or HATU) to form a stable amide bond. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
ProbeSure OneStep RT-PCR Master Mix combines reverse transcription (RT) and PCR in a single step. This advanced master mix simplifies workflows by eliminating the need for separate reactions for reverse transcription of RNA to cDNA, and PCR amplification from the newly generated cDNA.
ProbeSure OneStep RT-PCR Master Mix is highly efficient and sensitive, enabling detection of low-abundance RNA targets, particularly useful for applications such as gene expression analysis and viral RNA detection. ProbeSure OneStep RT-PCR Master Mix demonstrates robust performance across a wide range of RNA templates and can be employed for both routine and challenging samples.
Document
ProbeSure OneStep RT-PCR Master Mix combines reverse transcription (RT) and PCR in a single step. This advanced master mix simplifies workflows by eliminating the need for separate reactions for reverse transcription of RNA to cDNA, and PCR amplification from the newly generated cDNA. ProbeSure OneStep RT-PCR Master Mix combines reverse transcription (RT) and PCR in a single step. This advanced master mix simplifies workflows by eliminating the need for separate reactions for reverse transcription of RNA to cDNA, and PCR amplification from the newly generated cDNA. ProbeSure OneStep RT-PCR Master Mix combines reverse transcription (RT) and PCR in a single step. This advanced master mix simplifies workflows by eliminating the need for separate reactions for reverse transcription of RNA to cDNA, and PCR amplification from the newly generated cDNA. ProbeSure OneStep RT-PCR Master Mix combines reverse transcription (RT) and PCR in a single step. This advanced master mix simplifies workflows by eliminating the need for separate reactions for reverse transcription of RNA to cDNA, and PCR amplification from the newly generated cDNA.
Short term stability: 2-8oC, Long term stability: See individual component labels
Stability:
> 2 years under recommended storage conditions
Analyte:
Dietary Fiber
Assay Format:
Enzymatic
Detection Method:
Gravimetric/HPLC
Signal Response:
Increase
Limit of Detection:
0.5 g/100 g
Total Assay Time:
~ 3 h work (over 1-2 days)
Application examples:
Food ingredients, food products and other materials.
Method recognition:
AACC Method 32-60.01, AOAC Method 2022.01, AOAC Method 2017.16, ICC Standard Method No. 185 and CODEX Method Type I
The Rapid Integrated Total Dietary Fiber Assay Kit method is validated under collaborative study (AACC Method 32-60.01, AOAC Method 2022.01, AOAC Method 2017.16, ICC Standard No. 185) and is recognized as a Type I Method by CODEX Alimentarius. The K-RINTDF method is the recommended one for the measurement of total dietary fiber in all foods that may or may not contain resistant starch. This method is updated to be more consistent with in vivo conditions in the human small intestine, i.e. a 4 h incubation time. Under these conditions more accurate measurement of resistant starch is obtained, including phosphate cross-liked starch (RS4). Use of higher enzyme concentrations ensures that resistant maltodextrins produced from non-resistant starch under the incubation conditions of the Integrated Total Dietary Fiber procedure (AOAC Methods 2009.01 and 2011.25) are no longer produced.
In this improved, rapid method, the incubation time with PAA + AMG is reduced to 4 h and the levels of both PAA and AMG are increased to ensure that resistant starch levels obtained with a set of control samples are consistent with ileostomy data. Under these conditions, the DF values obtained for most samples are the same as those obtained with AOAC Methods 2009.01 and 2011.25.
The dietary fiber fractions that are measured with this method are:
1. High Molecular Weight Dietary Fiber (HMWDF) including Insoluble Dietary Fiber (IDF) and High Molecular Weight Soluble Dietary Fiber (SDFP; soluble dietary fiber which is precipitated in the presence of 78% aqueous ethanol), and
2. Low Molecular Weight Soluble Dietary Fiber (SDFS; water soluble dietary fiber that is soluble in the presence of 78% aqueous ethanol).
Alternatively, IDF, SDFP and SDFS can be measured separately.
The enzymes used in this method are high purity and effectively devoid of contaminating enzymes active on other dietary fiber components such as β-glucan, pectin and arabinoxylan. They are supplied as freeze-dried powders; allowing the use of glycerol as an internal standard in the method.
* See McCleary, B. V., Sloane, N & Draga, A. (2015). Determination of total dietary fibre and available carbohydrates: a rapid integrated procedure that simulates in vivo digestion. Starch/Starke, 66, 1-24.
Validation of Methods
Advantages
More rapid measurement – incubation time with PAA + AMG reduced to 4 h in comparison with AOAC 2009.01 (increased levels of enzyme employed)
DF values for most samples are very similar to those obtained with AOAC Method 2009.01
Rapid Integrated Total Dietary Fiber method removes all of the limitations that have been identified with AOAC Method 2009.01*
All reagents stable for > 2 years after preparation
The method is consistent with the CODEX Alimentarius definition of dietary fiber
Mega-Calc™ software tool is available from our website for hassle-free raw data processing
Very competitive price (cost per test)
Document
The Rapid Integrated Total Dietary Fiber Assay Kit method is validated under collaborative study (AACC Method 32-60.01, AOAC Method 2022.01, AOAC Method 2017.16, ICC Standard No. 185) and is recognized as a Type I Method by CODEX Alimentarius. The K-RINTDF method is the recommended one for the measurement of total dietary fiber in all foods that may or may not contain resistant starch. This method is updated to be more consistent with in vivo conditions in the human small intestine, i.e. a 4 h incubation time. Under these conditions more accurate measurement of resistant starch is obtained, including phosphate cross-liked starch (RS4). Use of higher enzyme concentrations ensures that resistant maltodextrins produced from non-resistant starch under the incubation conditions of the Integrated Total Dietary Fiber procedure (AOAC Methods 2009.01 and 2011.25) are no longer produced.