For scaling up and fully automating PCR setup and thermocycling.
With the Flex PCR Workstation, you can automate your PCR setup and thermocycling at the scale you need to increase efficiency, reduce errors, and save hands-on time. Configure your workstation with our on-deck Thermocycler for end-to-end automation, or with no Thermocycler for automated PCR setup with off-deck thermocycling.
Optional add-ons can be purchased at a 10% discount when ordered with the Flex PCR Workstation*
Detail
For scaling up and fully automating PCR setup and thermocycling.
With the Flex PCR Workstation, you can automate your PCR setup and thermocycling at the scale you need to increase efficiency, reduce errors, and save hands-on time. Configure your workstation with our on-deck Thermocycler for end-to-end automation, or with no Thermocycler for automated PCR setup with off-deck thermocycling.
Optional add-ons can be purchased at a 10% discount when ordered with the Flex PCR Workstation*
Other Products
DBCO-Sulfo-NHS ester
Product Info
Document
Product Info
DBCO-Sulfo-NHS ester is a water-soluble sulfocated reagent containing DBCO moiety. It can be used for simple and efficient labeling of antibodies, proteins and any other primary amine-bearing macromolecules with DBCO moiety in 100% aqueous buffers. DBCO is commonly used for copper-free Click Chemistry reactions. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Document
DBCO-Sulfo-NHS ester is a water-soluble sulfocated reagent containing DBCO moiety. It can be used for simple and efficient labeling of antibodies, proteins and any other primary amine-bearing macromolecules with DBCO moiety in 100% aqueous buffers. DBCO is commonly used for copper-free Click Chemistry reactions. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Short term stability: 2-8oC, Long term stability: See individual component labels
Stability:
> 2 years under recommended storage conditions
Analyte:
Available Carbohydrates, Dietary Fiber
Assay Format:
Spectrophotometer
Detection Method:
Absorbance
Wavelength (nm):
340
Signal Response:
Increase
Linear Range:
4 to 80 μg of D-glucose, D-fructose or D-galactose per assay
Limit of Detection:
1.475 g/100 g
Reaction Time (min):
~ 5 h
Application examples:
Food ingredients, food products and other materials.
Method recognition:
AOAC Method 2020.07
The Available Carbohydrates Assay Kit method is suitable for the determination of available carbohydrates (AVCHO) comprising *total digestible starch (TDS) plus maltodextrins, sucrose, D-glucose, D-fructose and lactose. New Improved method receiving ‘First Action’ status: AOAC 2020.07. This method is designed to simulate in vivo conditions in the human small intestine (i.e. a 4 h incubation time with PAA + AMG) in parallel with recent advances in Dietary Fiber (DF) methodology (K-RINTDF: AOAC Method 2017.16) and in accordance with the new (physiological based) definition of DF announced by Codex Alimentarius in 2009. Also, sucrose is hydrolysed with a specific “sucrase” enzyme which (unlike invertase which has been used traditionally for this reaction) has no action on fructo-oligosaccharides (FOS).
* Total digestible starch (TDS) is defined as starch that is digested in a 4 h period and is part of the carbohydrate that is available for digestion and absorption in the human small intestine.
The Available Carbohydrates Assay Kit method is suitable for the determination of available carbohydrates (AVCHO) comprising *total digestible starch (TDS) plus maltodextrins, sucrose, D-glucose, D-fructose and lactose. New Improved method receiving ‘First Action’ status: AOAC 2020.07. This method is designed to simulate in vivo conditions in the human small intestine (i.e. a 4 h incubation time with PAA + AMG) in parallel with recent advances in Dietary Fiber (DF) methodology (K-RINTDF: AOAC Method 2017.16) and in accordance with the new (physiological based) definition of DF announced by Codex Alimentarius in 2009. Also, sucrose is hydrolysed with a specific “sucrase” enzyme which (unlike invertase which has been used traditionally for this reaction) has no action on fructo-oligosaccharides (FOS).