

K-FRUC
SKU: 700004285
100 assays per kit
| Content: | 100 assays per kit |
| Shipping Temperature: | Ambient |
| Storage Temperature: | Short term stability: 2-8oC, Long term stability: See individual component labels |
| Stability: | > 2 years under recommended storage conditions |
| Analyte: | Fructan |
| Assay Format: | Spectrophotometer |
| Detection Method: | Absorbance |
| Wavelength (nm): | 410 |
| Signal Response: | Increase |
| Linear Range: | 2.3 to 55 µg of D-fructose or D-glucose per assay |
| Limit of Detection: | 0.16 g/100 g |
| Total Assay Time: | ~ 90 min |
| Application examples: | Flours, infant formula, animal feed, pet foods, plant materials (e.g. onion), food products and other materials |
| Method recognition: | AACC Method 32-32.01, AOAC Method 999.03, AOAC Method 2016.14, AOAC Method 2018.07 and CODEX Method Type III |
The Fructan Assay Kit is suitable for the specific measurement of fructan in plant extracts, animal feed and food products containing starch, sucrose and other sugars. It is used in three validated methods for the determination of fructan: AOAC method 999.03 (foods), AOAC method 2018.07 (Animal Feed) and AOAC method 2016.14 (infant formula and adult nutritionals).
New, improved procedure.
In the most recent development, a recombinant endo-levanase has been incorporated into the fructanase mixture, extending the use of the method to the measurement of levan-type fructans as are present in grasses such as timothy, cocksfoot, ryegrass and red fescue.
The method described in this booklet employs ultra-pure, recombinant enzymes and specifically measures fructans including inulin-type fructans from chicory, dahlia, jerusalem artichoke; highly branched fructans from onion and wheat stems and leaves; and levan-type fructans from pasture grasses such as timothy grass. The enzymes employed are completely devoid of contaminating enzymes active on β-glucan or gluco-oligosaccharides.
Browse our full range of polysaccharide assay kits.
Validation of Methods
Advantages
The Fructan Assay Kit is suitable for the specific measurement of fructan in plant extracts, animal feed and food products containing starch, sucrose and other sugars. It is used in three validated methods for the determination of fructan: AOAC method 999.03 (foods), AOAC method 2018.07 (Animal Feed) and AOAC method 2016.14 (infant formula and adult nutritionals).
Biocolor’s Purple-Jelley assay kit is the perfect tool for accurate measurement of hyaluronic acid / Hyaluronan levels in your samples. This colorimetric assay is optimised for quantitative analysis in-vivo, tissue-derived hyaluronic acid / Hyaluronan and includes full step-by-step instructions.
Colorimetric Detection (655nm) (Endpoint)
Hyaluronic acid, in its hydrated form, is a unique carbohydrate polymer, often referred to as a ‘gentle giant.’ It consists of a lengthy, flexible, non-branching chain with a repeating disaccharide pattern. This disaccharide is composed of alternating uronic acid and aminosugar units.
Discovering the J-Aggregate Effect in Cyanine DyesIn 1936, Edwin Jelley made a fascinating observation, documented it in a letter to Nature (Nature 138, 1009 – 1010). He noted a peculiar behaviour of certain cyanine dyes, that when dissolved in 5 M NaCl, they dyes exhibited a third absorbance peak at a longer wavelength, around 650nm. In deionized water, however, they displayed only a double peak at approximately 540nm and 570nm. The 650nm peak in concentrated dye solutions resulted from the aggregation of dye molecules and was later termed a ‘J-aggregate,’ in honor of Edwin Jelley. The J-aggregate is known as a supra-molecular complex, formed by stacking individual dye molecules.
Subsequent research in the 1960s, notably by Kay et al. (J. Physical Chem. 68, 1896 – 1906), revealed that various biological polymers, including proteins, DNA, polar lipids, and glycosaminoglycans, could also induce this third absorbance peak. This phenomenon led to the development of the Purple-Jelley assay, named after the purple color of the dye reagent and Edwin Jelley himself.
During the assay, hyaluronic acid is selectively purified during the assay sample preparation protocol. This is then reacted with the Purple-Jelley dye reagent, and the absorption of the characteristic third wavelength recorded. By comparison with a calibration curve the hyaluronic acid content of the sample can be measured.
Step 1. The assay protocol takes tissue samples through a sequential sample preparation protocol which involves enzymatic protein digestion, followed by precipitation and purification of GAGs, culminating in the precipitation of purified Hyaluronic acid.
Step2. The processed sample is then incubated for 10 minutes with the Purple-Jelley dye reagent, forming a coloured product which can be measured spectrophotometrically.
Step 3. The Hyaluronic acid content of unknown samples can be calculated by comparison against a calibration curve prepared using a standard comprising hyaluronic acid (supplied with the kit).
10 – 100µg/ml
10µg/ml
Colorimetric Detection (655nm) (Endpoint)
100 in total (allows a maximum of 46 samples to be run in duplicate alongside a standard curve).
In-vivo: Hyaluronic acid purified from in-vivo tissues. The kit protocol involves extraction and purification of hyaluronic acid prior to reaction with the Purple-Dye reagent.
This kit is designed for research use only. Not for use in diagnostic procedures.
Kit requires access to a centrifuge, as well as a spectrophotometer/colorimeter capable of colorimetric, absorbance detection at 655nm.
Specific sample preparation protocols may require customer to provide further reagents, consult assay manual for further information.
Mode of ActionAssay SpecificationsKit Contents
1. Purple-Jelley Dye Reagent (1x 20ml)
2. Hyaluronan Reference Standard (1x 5ml, 0.2mg/ml soluble Hyaluronic Acid)
3. Precipitating Reagent (2x 34ml)
4. Sodium Chloride (1x 20ml)
5. Cetylpyridinium Chloride (1x 20ml)
6. TRIS-buffered Saline (5x tablets)
7. 2ml screw-cap tubes for preparation of samples.
8. Assay kit manual
NB: Additional reagents may be required for sample preparation prior to assay. Consult manual or contact us for further details.
Biocolor’s Purple-Jelley assay kit is the perfect tool for accurate measurement of hyaluronic acid / Hyaluronan levels in your samples. This colorimetric assay is optimised for quantitative analysis in-vivo, tissue-derived hyaluronic acid / Hyaluronan and includes full step-by-step instructions.
Not all cyanobacterial strains produce toxins. However, the toxin-producing strains cannot be distinguished from the nontoxin-producing strains by traditional light microscopy, commonlyused to monitor water bodies. An alternative for the differentiation of potentially toxic strains from nontoxic strains is to use molecular methods to detect the presence of toxin biosynthetic genes. Such methods are already available and could be used for the detection and identification of potential microcystin and nodularin producers present in environmental samples (Attogene catalog number NA2024).
Screening for the toxin itself, can be very costly. In turn, real time PCR for the detection of a gene region responsible for assembling in cyanobacterial strains and environmental samples can be a key indicator for the prescense of cyanobacteria capable of expressing the aetokthonotoxin toxin. Attogen has thus, designed primer pairs and probes targeting a the conserved gene region in order to enable the amplification and detection of several producer genera using real time PCR. Screening for the toxin genes can save significant costs and act as a triage for samples needing to be analyzed for the toxin itself.
Cyanobacterial neurotoxin aetokthonotoxin (AETX), a peculiar pentabrominated biindole alkaloid implicated in fatal Vacuolar Myelinopathy. This neurodegenerative disease was first recorded in 1994 during an outbreak of bald-eagle poisonings at De Gray Lake in Arkansas, USA. AETX was experimentally confirmed to be produced by the true branching heterocytous cyanobacterium Aetokthonos hydrillicola. The production of AETX is dependent on bromide (Br−) availability, and likely linked to its hyper-accumulation by the host plan. Thus regular monitoring of A. hydrillicola (accompanied by assessment of Br− and AETX levels) is highly advisable to predict the possible threat of further VM outbreaks.
The cyanobacterial AetA gene which encodes the unique FAD-dependent halogenase involved in the pathway for AETX synthesis has been adapted to develop a -aetokthonotoxin specific quantitative PCR (qPCR) assay.
Real time qPCR kit for AetA gene
For screening aetokthonotoxin gene cluster
Use in combination with Attogene Algae DNA isolation kit