N-(Acid-PEG2)-N-bis(PEG2-propargyl) is reactive with azide-bearing compounds or biomolecules via copper catalyzed azide-alkyne Click Chemistry to yield a stable triazole linkage. The terminal carboxylic acid can react with primary amino groups in the presence of activators (e.g. EDC, or HATU) to form a stable amide bond. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Detail
N-(Acid-PEG2)-N-bis(PEG2-propargyl) is reactive with azide-bearing compounds or biomolecules via copper catalyzed azide-alkyne Click Chemistry to yield a stable triazole linkage. The terminal carboxylic acid can react with primary amino groups in the presence of activators (e.g. EDC, or HATU) to form a stable amide bond. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
Other Products
Candida albicans TaqMan PCR Detection Kits
Product Info
Document
Product Info
Overview
Detection kits for Candida albicans
CE-IVD marked version available for in vitro diagnostic use
Available in TaqMan format for analysis
Candida albicans is an opportunistic yeast and is the most common fungal pathogen found in the human body. C. albicans can be detected in the gastrointestinal tract, mouth, and vagina of approximately half of healthy adults. It is typically a commensal organism and makes up part of the natural human microflora; however it can overgrow and become pathogenic as a result of various conditions. For example, individuals who have taken recent courses of antibiotics, have a weakened immune system or have diabetes have an increased risk of developing a Candida albicans infection. When an overgrowth occurs, this can lead to common infections such as urinary tract infections, genital yeast infections, oral thrush, and mucocutaneous candidiasis. In the more severe cases, when Candida albicans enters the bloodstream or organs, it can lead to loss of sight, blood and bone infections, endocarditis, meningitis or inflammation of the intraabdominal lining.
Candida albicans TaqMan PCR Kit, 100 reactions
Ready to use format, including Master Mix for the target and PCR control to monitor for PCR inhibition and validate the quality
Specific Primer and Probe mix for the pathogen/virus/viroid of interest
Primer and Probe mix
Positive and negative control to confirm the integrity of the kit reagents
Candida albicans TaqMan PCR Probe/Primer Set and Controls, 100 reactions
Specific Primer/Probe mix and Positive Control for the pathogen/virus/viroid of interest
Nuclease-free water
Can be used together with Norgen’s PCR Master Mix (#28007) or customer supplied master mix
Storage Conditions and Product Stability All kit components can be stored for 2 years after the date of production without showing any reduction in performance.
All kit components should be stored at -20°C upon arrival. Repeated thawing and freezing (> 2 x) of the Master Mix and Positive Control should be avoided, as this may affect the performance of the assay. If the reagents are to be used only intermittently, they should be frozen in aliquots.
[RI1001] RNAok™ RNase Inhibitor, 20 U/μl, 2000 U x 5
Product Info
Document
Product Info
Description
The RNAok™ RNase Inhibitor is a recombinant mammalian RNase inhibitor which possesses very high affinity for eukaryotic pancreatic-type ribonuclease. The RNAok™ RNase Inhibitor forms a 1:1 complex with pancreatic RNase A by noncovalent binding, presenting a noncompetitive inhibitory activity on these pancreatic enzymes. RNAok™ RNase Inhibitor is active against RNase A, RNase B, RNase C but not RNAse H, RNase I, RNase T1, RNase T2, and S1 nuclease. RNAok™ RNase Inhibitor is compatible with RT-PCR enzymes such as AMV, M-MLV and ExcelRT™ Reverse Transcriptase or Taq DNA polymerase.
Application
cDNA Synthesis
in vitro translation
in vitro transcription
One-step RT-PCR
Separation and identification of specific ribonuclease activities
Storage Buffer
40 mM HEPES-KOH (pH 7.5), 100 mM KCl, 8 mM DTT, 0.1 mM EDTA, stabilizer and 50% (v/v) glycerol
Storage
-20°C for 24 months
Document
The RNAok™ RNase Inhibitor is a recombinant mammalian RNase inhibitor which possesses very high affinity for eukaryotic pancreatic-type ribonuclease. The RNAok™ RNase Inhibitor forms a 1:1 complex with pancreatic RNase A by noncovalent binding, presenting a noncompetitive inhibitory activity on these pancreatic enzymes. RNAok™ RNase Inhibitor is active against RNase A, RNase B, RNase C but not RNAse H, RNase I, RNase T1, RNase T2, and S1 nuclease. RNAok™ RNase Inhibitor is compatible with RT-PCR enzymes such as AMV, M-MLV and ExcelRT™ Reverse Transcriptase or Taq DNA polymerase.
Collagen is a fundamental component of the extracellular matrix, and the predominant protein in animals, constituting around 30% of total protein mass. A glycoprotein, it is well known for its triple helical structure. This is formed from three polypeptide α-chains with Gly-X-Y repeating residues (Gly for Glycine, X for proline, and Y for hydroxyproline).
Types of Collagen
Over 28 types of collagens have been identified, with Type I collagen being the most abundant. It’s prevalent in ligaments, tendons, skin, and bone tissue. Its mature, insoluble form grants it remarkable strength, making it vital for the mobility of organisms. Collagen also has biochemical functions, influencing cell growth, proliferation, and differentiation.
This version of the kit is designed to detect and measure SOLUBLE forms of collagen. Chose the Sircol Insoluble collagen kit if you need to analyse INSOLUBLE collagen.
Applications of Collagen
Collagen, with its diverse properties, finds utility in various industries. It plays a role in medicine for wound healing and has an expanding role in tissue engineering and cell culture for biomedical purposes. It’s gaining popularity in the cosmetic industry for skin rejuvenation and is used in chemical formulations and the food industry as a functional food supplement and additive.
How does Sircol 2.0 detect collagen?
The Sircol 2.0 dye reagent includes Sirius Red, a linear anionic dye with sulfonic acid side chains. This reagent is specially formulated to bind to the Gly-X-Yn helical structure of soluble collagen under assay conditions.
*The improved formulation of Sircol 2.0 dye enables a greater degree of dye-collagen specificity (compared to our previous S1000 assay kit).
Overview of the Sircol 2.0 assay process:
Step 1. Prepared samples are placed in the wells of the assay microplate, together with Sircol Dye Reagent. After 30 minutes mixing, any collagen-dye complexes will form as a precipitate. These are collected on the base of the microplate wells by centrifugation.
Step 2. Unbound dye is removed by gentle aspiration, followed by a rinse with Plate Wash Reagent.
Step 3. Following further centrifugation, collagen-bound dye is eluted by incubation with a Dye Release Reagent. Eluted dye is detected ‘in-situ’ by spectrophotometric analysis of the microplate at 556nm.
Step 4. The collagen content of unknown samples can be quantified by comparison against a calibration curve, prepared using the Collagen Reference Standard supplied with the kit.
A list of suggested sample types can be found under the ‘Assay Specification‘ tab.
Colorimetric Detection (556nm) (Endpoint), Requires a microplate centrifuge.
Measurements per kit
96 in total (allows a maximum of 41 samples to be run in duplicate alongside a standard curve).
Suitable Samples
Soluble* collagens from mammalian**:
In-vivo: Tissues, cartilages and fluids.
In-vitro: Extracellular matrices / Conditioned media from 2D/3D culture environments.
The straightforward sample processing and analysis of Sirco 2.0 make it a good alternative to conventional hydroxyproline analysis.
*Prior salt/acid/acid-pepsin extraction may be necessary to release soluble collagen.
**Sircol 2.0 is primarily designed for use with in-vivo / in-vitro samples of mammalian origin. Collagens originating from other taxonomic groups and kingdoms can also be analysed. See note on p6 of manual for further information.
Precautions
This kit is designed for research use only. Not for use in diagnostic procedures. Kit requires access to a microplate centrifuge* (see note below), as well as a spectrophotometer/colorimeter capable of absorbance detection at 556nm. Specific sample preparation protocols may require customer to provide further reagents, consult assay manual for further information.
*As a minimum, we recommend that the centrifuge can centrifuge a 96-well microplate at 400 x g for 120 minutes. Higher speed centrifuges are recommended (up to a maximum of 2000 x g), allowing a reduction in centrifuge time.
Sircol 2.0 kit contents:
1. Dye Reagent (1x20ml)
2. Collagen Reference Standard (1x5ml, 200µg/ml of soluble Bovine collagen)
3. Plate Wash Reagent (1x28ml)
4. Collagen Concentration Reagent (1x25ml)
5. Neutralisation Reagent (1x8ml)
6. Dye Release Reagent (1x25ml)
7. Assay Microplate (1×96-wells)
8. Microplate Seals (6x)
9. Documentation (QuickStart Guide / Manual / Certificate of Analysis)
NB: Additional reagents may be required for sample preparation prior to assay. Consult manual or contact us for further details. This kit requires the use of a microplate centrifuge, capable of centrifuging a 96-well microplate at 400 x g for 120 minutes. Higher speed centrifuges are recommended (up to a maximum of 2000 x g), allowing a reduction in centrifuge time.
Document
Experience user-friendly detection & measurement of Soluble Collagen with Sircol™ 2.0! Our latest kit simplifies collagen quantification within in-vivo / in-vitro samples. Sircol 2.0 offers enhanced sensitivity and accuracy compared to our previous Sircol kit.