The Pectin Identification Assay Kit is suitable for the identification of pectin in food ingredients. This kit now employs a new pectate lyase from Aspergillus niger.
Detail
K-PECID
SKU: 700004325
500 assays per kit
Content:
500 assays per kit
Shipping Temperature:
Ambient
Storage Temperature:
Short term stability: Ambient, Long term stability: See individual component labels
Stability:
> 2 years under recommended storage conditions
Analyte:
Pectin
Assay Format:
Spectrophotometer
Detection Method:
Absorbance
Wavelength (nm):
235
Signal Response:
Increase
Reaction Time (min):
~ 30 min
Application examples:
Food ingredients (e.g. citrus fruit and apple) and other materials.
The Pectin Identification Assay Kit is suitable for the identification of pectin in food ingredients. This kit now employs a new pectate lyase from Aspergillus niger.
All reagents stable for > 2 years after preparation
Only enzymatic kit available
Simple format
Standard included
Other Products
cfDNA Purification Kit (Magnetic Beads)
Product Info
Document
Product Info
cfDNA Purification Kit (Magnetic Beads)
The cfDNA Purification Kit (Magnetic Beads) was developed for cell free DNA (cfDNA) enrichment by separating genomic DNA contamination from isolated cfDNA samples.
Many diagnostic technologies for detection of disease signals in cfDNA begin with isolation and purification of DNA from liquid biopsy that include urine, plasma, cerebrospinal fluid. The most widely explored biotechnology is assays used to detect cancer-derived plasma cfDNA. Silica-based magnetic bead cfDNA isolation kits can reliably extract total DNA from plasma, but typically yield a large variation in cfDNA that includes the presence of genomic DNA that often depends on tumor stage, tumor size, or healthy status individuals. Most of the commercial cfDNA isolation kits can’t specifically recover the cfDNA while leaving the high molecular weight genomic DNA behind. The presence of genomic DNA can lead to decreased sensitivity or inconsistent results in downstream applications such as next-generation sequencing (NGS), PCR, QPCR, and digital PCR etc.
Therefore, an additional purification step to enrich cfDNA before downstream methods helps to improve signal from fragments that originate from cancer cells. A proportion of cancer-derived cfDNA fragment signals are below 100 bp and are often not detectable except by qPCR or single-stranded DNA based library preparation for NGS (1, 2, 3). Furthermore only 1% of cancer-derived fragments are found above 400 bp (1, 2). Capture of size-selected fragments between 90-150 bp improved detection of cancer by 2-4 fold (4). Furthermore, TF-bound and protected cfDNA fragments are also being investigated for active cancer-specific signals down to 35-80 bp (5, 6).
This kit uses Dual Solid Phase Reversible Immobilization (SPRI) technology for cfDNA purification. Most Dual SPRI procedures do NOT recover fragments below 100 bp. The kit can be used for the enrichment of cfDNA isolated from liquid biopsies, plasma, serum, and urine. The kit separates cfDNA (50-500 bp) and genomic DNA, and recovers of 90% of the cfDNA without the high molecular weight genomic DNA with high efficiency. Fragments at 500 bp and above may also be retained. Both the 50-500 bp and >500 bp DNA fractions can be used for downstream applications such as single-stranded or double stranded NGS library prep, qPCR, ddPCR, and other methods.
Features
Separation of cfDNA and genomic DNA; Recovery of both types of DNA
Recovery of cfDNA (50-500 bp)
As short as 50 bp can be recovered
Recovery of high molecular weight genomic DNA
Removal of unwanted components and other impurities
Automation friendly
Examples of cfDNA purification. Both cfDNA and genomic DNA can be recovered separately.
The range of recovered small DNA fragments is from 50 to 500 bp. The input DNA are mixtures of sheared small DNA fragments and intact genomic DNA. The ratios of sheared DNA fragments versus genomic DNA are indicated.
Recovery rates of cfDNA and genomic DNA.
Document
Many diagnostic technologies for detection of disease signals in cfDNA begin with isolation and purification of DNA from liquid biopsy that include urine, plasma, cerebrospinal fluid. The most widely explored biotechnology is assays used to detect cancer-derived plasma cfDNA. Silica-based magnetic bead cfDNA isolation kits can reliably extract total DNA from plasma, but typically yield a large variation in cfDNA that includes the presence of genomic DNA that often depends on tumor stage, tumor size, or healthy status individuals. Most of the commercial cfDNA isolation kits can’t specifically recover the cfDNA while leaving the high molecular weight genomic DNA behind. The presence of genomic DNA can lead to decreased sensitivity or inconsistent results in downstream applications such as next-generation sequencing (NGS), PCR, QPCR, and digital PCR etc.
For enrichment of bacteria of cosmetics and disposable hygiene products.
Principle:
Casein peptone and soybean peptone provide the nitrogen source, vitamins, and growth factors; sodium chloride to maintain osmotic balance; dipotassium hydrogenphosphate as a buffer; lecithin and Tween 80 can neutralize preservatives and can play a dispersed material in the emulsion features, lecithin can neutralize quaternary ammonium salt, Tween 80 neutralizes phenols, hexachlorophene, formalin, a combination that can neutralize and ethanol.
Formulation(per liter):
Casein peptone 17g
Soy peptone 3g
Sodium chloride 5g
Dipotassium hydrogen phosphate 2.5g
Glucose 2.5g
Lecithin 1g
Tween 80 7g
Final pH7.2 ± 0.2
How to use:
1.Suspend 38g in 1 L of distilled water , stirring heated to boiling until completely dissolved, distribute into flask,autoclave at 121 for 15 minutes.
2.Diluted and treated samples.
Storage: Keep container tightly closed, store in a cool, dry place, away from bright light. Storage period of 3 years.
HiDi® stands for High Discrimination of mismatches at the 3’-terminus of primers in PCR. This myPOLS Biotec enzyme family is optimized for this feature and therefor, is the first choice for applications that rely on this property such as allele-specific PCR (asPCR) that is also termed allele-specific amplification (ASA).HiDi® 2x PCR Master Mix – ready to use mix simplifies your PCR setup. Only target-specific primers and template need to be added as the mix contains all components for a successful and reliable PCR. This ensures reproducible results, significantly reduces set-up times and the risk of pipetting errors.This PCR mix is also available with a full-length Taq DNA polymerase with a nuclease domain, featuring 100% compatibility with hydrolysis probes (TaqMan® probes etc.).Benchmarking with products of competitors conducted by us and others show that the HiDi® DNA polymerase family is the first choice for highly selective PCRs, such as genotyping by allele-specific PCR, HLA genotyping, analysis of single CpG methylation sites or the detection of mutations in a high background of wild-type sequences. By using HiDi® DNA polymerase, less than 10 copies of a mutation can be detected in a background of >10.000 wild-type copies straight away without any other tedious assay optimization.It has also been shown that HiDi® DNA polymerase family is highly suitable for quality control in CRISPR-Cas or TALEN-based applications.Several independently conducted studies show that HiDi® DNA polymerase is ideally suited for use in asPCR in numerous research areas ranging from mutation detection to genome editing. (read more)For research use and further manufacturing.In case you are aiming to use our RUO products as components or for your development of e.g. an IVD medical device, please contact us.
Casestudies: HiDi® DNA Polymerase: Applications from mutation detection to genome editing (read more)
Example Primer Design
Matching vs. mismatching nucleotide is placed at the 3′-end of the primer for best discrimination results.
Example Results – There´s no accounting for taste
Cilantro: some people love it in their food, some hate it. Here we are detecting a genomic SNP (rs72921001) in HeLa genomic DNA. This SNP is reported to be close to a number of genes coding for olfactory receptors. (Reference: Eriksson N. et al. (2012), “A genetic variant near olfactory receptor genes influences cilantro preference.”)
Considering, that only the C-allele specific primer is extended and yielding in a specific amplicon, we can conclude a genetic predisposition in disliking cilantro, as this SNP is significantly associated with detecting a soapy taste to cilantro.
Allele-specific PCRs were performed from 1 ng/µl of HeLa gDNA in the presence of a realtime dye, indicating the amplification of the C-allele specific primer only. The A-allele specific primer is discriminated, thus not amplified up to 50 cycles.
PCR products were subsequently analysed on a 2.5% agarose gel. Specific product is visualized by ethidium bromide staining at the amplicon length of 109 bp.
Document
HiDi® stands for High Discrimination of mismatches at the 3’-terminus of primers in PCR. This myPOLS Biotec enzyme family is optimized for this feature and therefor, is the first choice for applications that rely on this property such as allele-specific PCR (asPCR) that is also termed allele-specific amplification (ASA).
HiDi® 2x PCR Master Mix – ready to use mix simplifies your PCR setup. Only target-specific primers and template need to be added as the mix contains all components for a successful and reliable PCR. This ensures reproducible results, significantly reduces set-up times and the risk of pipetting errors.