RNA into DNA and PCR in one step? Then, this enzyme will simplify PCR analysis from RNA templates reducing labor and time. RT-KTQ2 was evolved from the thermostable KlenTaq DNA polymerase with no significant reverse transcriptase activity. Four mutations ensure that the variant is reverse transcriptase active and even PCR active, while maintaining the thermostability. This allows to perform reactions at high temperatures minimizing problems encountered with strong secondary structures in RNA that melt at elevated temperatures. For further information refer to the original publication.
Detail
RNA into DNA and PCR in one step? Then, this enzyme will simplify PCR analysis from RNA templates reducing labor and time. RT-KTQ2 was evolved from the thermostable KlenTaq DNA polymerase with no significant reverse transcriptase activity. Four mutations ensure that the variant is reverse transcriptase active and even PCR active, while maintaining the thermostability. This allows to perform reactions at high temperatures minimizing problems encountered with strong secondary structures in RNA that melt at elevated temperatures. For further information refer to the original publication.
Available upon request and for R&D use only – Contact Us
RT-KTQ2 DNA polymerase is supplied as a 5 µM solution containing glycerol and is supplied together with 10x reaction buffer.
The enzyme can also be used for real-time cycling, when adding a suitable dye.
Other Products
Available Carbohydrates Assay Kit
Product Info
Document
Product Info
K-AVCHO
SKU: 700004267
100 Assays of each per kit
Content:
100 assays of each per kit
Shipping Temperature:
Ambient
Storage Temperature:
Short term stability: 2-8oC, Long term stability: See individual component labels
Stability:
> 2 years under recommended storage conditions
Analyte:
Available Carbohydrates, Dietary Fiber
Assay Format:
Spectrophotometer
Detection Method:
Absorbance
Wavelength (nm):
340
Signal Response:
Increase
Linear Range:
4 to 80 μg of D-glucose, D-fructose or D-galactose per assay
Limit of Detection:
1.475 g/100 g
Reaction Time (min):
~ 5 h
Application examples:
Food ingredients, food products and other materials.
Method recognition:
AOAC Method 2020.07
The Available Carbohydrates Assay Kit method is suitable for the determination of available carbohydrates (AVCHO) comprising *total digestible starch (TDS) plus maltodextrins, sucrose, D-glucose, D-fructose and lactose. New Improved method receiving ‘First Action’ status: AOAC 2020.07. This method is designed to simulate in vivo conditions in the human small intestine (i.e. a 4 h incubation time with PAA + AMG) in parallel with recent advances in Dietary Fiber (DF) methodology (K-RINTDF: AOAC Method 2017.16) and in accordance with the new (physiological based) definition of DF announced by Codex Alimentarius in 2009. Also, sucrose is hydrolysed with a specific “sucrase” enzyme which (unlike invertase which has been used traditionally for this reaction) has no action on fructo-oligosaccharides (FOS).
* Total digestible starch (TDS) is defined as starch that is digested in a 4 h period and is part of the carbohydrate that is available for digestion and absorption in the human small intestine.
The Available Carbohydrates Assay Kit method is suitable for the determination of available carbohydrates (AVCHO) comprising *total digestible starch (TDS) plus maltodextrins, sucrose, D-glucose, D-fructose and lactose. New Improved method receiving ‘First Action’ status: AOAC 2020.07. This method is designed to simulate in vivo conditions in the human small intestine (i.e. a 4 h incubation time with PAA + AMG) in parallel with recent advances in Dietary Fiber (DF) methodology (K-RINTDF: AOAC Method 2017.16) and in accordance with the new (physiological based) definition of DF announced by Codex Alimentarius in 2009. Also, sucrose is hydrolysed with a specific “sucrase” enzyme which (unlike invertase which has been used traditionally for this reaction) has no action on fructo-oligosaccharides (FOS).
This product is suitable for rapid extraction of total DNA from tissue, cells, blood, saliva, swabs, blood spots, semen and other clinical samples. DNA can be used directly for PCR, quantitative PCR, Southern Blot, test of virus DNA and so on.
Details
Specifications
Features
Specifications
Main Functions
Isolation total DNA from tissue / blood / body fluid / swab /dry blood spots
Applications
PCR, qPCR, southern bolt and virus detection, etc.
Purification method
Mini spin column
Purification technology
Silica technology
Process method
Manual (centrifugation or vacuum)
Sample type
Tissue, cell, blood, saliva, swab, blood spot, semen and other clinical samples
This product is based on silica Column purification. The sample is lysed and digested with lysate and protease, DNA is released into the lysate. Transfer to an adsorption column. Nucleic acid is adsorbed on the membrane, while protein is not adsorbed and is removed with filtration. After washing proteins and other impurities, nucleic acid was finally eluted with low-salt buffer (10mm Tris, pH9.0, 0.5mm EDTA).
Advantages
High quality DNA – meet a variety of downstream applications, including PCR, qPCR, enzyme digestion, hybridization, etc.
Fast – without separation of leukocytes, organic extraction or ethanol precipitation
Simple – all nucleic acids can be obtained by direct digestion
Wide applicability – It can handle various liquid samples, animal tissues and cultured cells
Kit Contents
Contents
IVD3018
Purification Times
100
HiPure DNA Mini Columns I
100
2ml Collection Tubes
2 x 100
Buffer ATL
60 ml
Buffer AL
60 ml
Buffer GW1
44 ml
Buffer GW2
50 ml
Proteinase K
60 mg
Protease Dissolve Buffer
5 ml
Buffer AE
15 ml
Storage and Stability
Proteinase K should be stored at 2–8°C upon arrival. However, short-term storage (up to 12 weeks) at room temperature (15–25°C) does not affect their performance. The remaining kit components can be stored at room temperature (15–25°C) and are stable for at least 18 months under these conditions. The entire kit can be stored at 2–8°C, but in this case buffers should be redissolved before use. Make sure that all buffers are at room temperature when used.
Experiment Data
Document
This product is suitable for rapid extraction of total DNA from tissue, cells, blood, saliva, swabs, blood spots, semen and other clinical samples. DNA can be used directly for PCR, quantitative PCR, Southern Blot, test of virus DNA and so on.
African Swine Fever Virus (ASFV) is a widespread disease which infects members of the pig family(Suidae). Anumberoftick species are believed to be the vector for the disease,as well as being transmitted by raw pork and pig excrement [1]. After firstly being identified in Kenya in 1921, ASFV became endemic in sub-Saharan Africa, with regular outbreaks being reported across Europe, Asia and South America throughout the century [2]. More recently the virus was introduced in Georgia and spread throughout the region, as well as mass outbreaks occurring in China in 2018 [3]. ASFVistheonlymemberoftheAsfaridaefamily.ItisalargeenvelopeddoublestrandedDNA virus of icosahedral morphology with an average diameter of 200nm and isolates contain genomes between 170-190Kbp encoding for up to 167 open reading frames [2]. The morphology of ASFV consist of several concentric domains. An inner core contains the nucleoid coated with a thick protein layered core shell, which is surrounded by an inner lipid envelope , all of which is encompassed by the capsid [2]. ASFV begins its replication cycle in the nucleus of infected cells before moving to the cytoplasm where the majority of the replication takes place [2]. Gene transcription is highly regulated, with distinct classes of mRNA identified to accumulate at early, intermediate and late transcripts of the virus [2]. The disease induces acute haemorrhagic disease within its hosts, causing high fevers and skin haemorrhages, with death often occurring within ten days of clinical symptoms appearing [4].
References: 1: The Centre for Food Security and Public Health (2015), African Swine Fever. 2: Galindo, I. and Alonso, C., 2017. African swine fever virus: a review. Viruses, 9(5), p.103. 3: Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., Zhang, S., Cao, P., Li, X., Tian, K. and Qiu, H.J., 2018. Emergence of African swine fever in China, 2018. Transboundary and emerging diseases, 65(6), pp.1482-1484. 4: Gallardo, C., Ademun, A.R., Nieto, R., Nantima, N., Arias, M., Martín, E., Pelayo, V. and Bishop, R.P., 2011. Genotyping of African swine fever virus (ASFV) isolates associated with disease outbreaks in Uganda in 2007. African Journal of biotechnology, 10(17), pp.3488-3497.
Document
Exceptional value for money Rapid detection of all clinically relevant subtypes Positive copy number standard curve for quantification Highly specific detection profile High priming efficiency Broad dynamic detection range (>6 logs) Sensitive to < 100 copies of target
Accurate controls to confirm findings