These kits provide a rapid method for the isolation and purification of total RNA and DNA sequentially from a single sample of cultured animal cells and tissues, blood, bacteria, yeast, or fungi. The lysate is passed over two columns: 1) a DNA column and 2) an RNA column. Total RNA of all sizes is purified, including microRNA. Both DNA and RNA are of the highest purity and yield.
These kits are ideal for researchers who are interested in studying the genome and transcriptome of a single sample, such as for studies of microRNA profiling, gene expression including gene silencing experiments or mRNA knockdowns, studies involving biomarker discovery, and for characterization of cultured cell lines. Norgen’s RNA/DNA Purification Kits are especially useful for researchers who are isolating macromolecules from precious, difficult to obtain or small samples such as biopsy materials or single foci from cell cultures, as they eliminate the need to fractionate the sample. Furthermore, analysis will be more reliable since the RNA and DNA are derived from the same sample, thereby eliminating inconsistent results. The purified macromolecules are of the highest purity and can be used in a number of different downstream applications
RNA/DNA Purification Kit (Spin Column)
Maximum column binding capacity of 50 μg for RNA and 20 μg for DNA.
RNA/DNA Purification Micro Kit (Micro)
The purified RNA and DNA fractions can be eluted in as little as 20 μL. Ideal for cell number inputs of 500,000 and as little as 5 cells. Maximum column binding capacity of 35 μg for RNA and 10 μg for DNA.
Figure 1 / 4
Click for expanded view
Kit Specifications | |
Maximum Column Binding Capacity | 50 μg for RNA 20 μg for DNA |
Maximum Column Loading Volume | 650 μL |
Size of RNA Purified | All sizes, including small RNA (< 200 nt) |
Maximum Amount of Starting Material: Animal Cells Animal Tissues Blood Bacteria Yeast Fungi Plant Tissues | 5 x 106 cells 25 mg (for most tissues)** 200 μL 1 x 109 cells 1 x 108 cells 50 mg 50 mg |
Time to Complete 10 Purifications | 30 minutes |
Average Yield*: HEK 293 Cells (1 x 106 cells) HEK 293 Cells (1 x 106 cells) Liver (15 mg) Liver (15 mg) | 10-15 μg RNA 2-4 μg DNA 30-35 μg RNA 4-6 μg DNA |
*Average Yield will vary depending upon a number of factors including species, growth conditions used, and development stage.
**Tissue inputs of up to 40 mg may be used, however for inputs greater than the recommended 25 mg, cross-contamination of the RNA and DNA fractions is possible.
Storage Conditions and Product Stability
Store Proteinase K at -20°C upon arrival. All other solutions should be kept tightly sealed and stored at room temperature. This kit is stable for 1 year after the date of shipment.
Component | Cat. 48700 (50 preps) | Cat. 50300 (50 preps) |
---|---|---|
Buffer SKP | 40 mL | 40 mL |
Wash Solution A | 2 x 38 mL 1 x 18 mL | 2 x 38 mL 1 x 18 mL |
Elution Solution A | 6 mL | 6 mL |
Elution Buffer F | 15 mL | 6 mL |
RNase-Free Water | 40 mL | 40 mL |
Proteinase K | 2 x 12 mg | 2 x 12 mg |
gDNA Purification Columns | 50 | – |
gDNA Purification Micro Columns | – | 50 |
RNA Purification Columns | 50 | – |
RNA Purification Micro Columns | – | 50 |
Collection Tubes | 100 | 100 |
Elution Tubes (1.7 mL) | 100 | 100 |
Product Insert | 1 | 1 |
Norgen’s EXTRAClean Plasma/Serum Exosome and Free-Circulating RNA Isolation Kit constitutes an all-in-one system for the purification of exosomes and the sequential isolation of RNA and free-circulating RNA from different plasma/serum sample volumes ranging from 50 μL and up to 10 mL. The purification is based on spin column chromatography that employs Norgen’s proprietary resin. The EXTRAClean columns undergo stringent processing and rigorous quality control measures to minimize contamination traces, ensuring optimal results for sensitive applications such as NGS. The kit is designed to isolate all sizes of RNA, including microRNA. The kit provides a clear advantage over other available kits in that they do not require any special instrumentation, protein precipitation reagents, extension tubes, phenol/chloroform or any protease treatments. Moreover, the kit allows the user to elute into a flexible elution volume ranging from 50 μL to 100 μL. The RNA isolated from the purified exosomes is free from any protein-bound circulating RNA and is of the highest integrity. Moreover, the free-circulating, protein-bound, RNA is free from any exosomal RNA. The purified RNA can be used in a number of downstream applications including real time PCR, NGS application, reverse transcription PCR, Northern blotting, RNase protection and primer extension, and expression array assays.
Figure 1 / 9
Click for expanded view
Kit Specifications (Spin Column) | |
Minimum Plasma Input | 4 mL |
Maximum Plasma Input | 10 mL |
Size of RNA Purified | All sizes, including miRNA and small RNA (< 200 nt) |
Elution Volume | 50-100 μL |
Time to Complete 10 Purifications | 40-45 minutes |
Average Yields | Variable depending on specimen |
Storage Conditions and Product Stability
All solutions should be kept tightly sealed and stored at room temperature. This kit is stable for 2 years after the date of shipment. It is recommended to warm Lysis Buffer A for 20 minutes at 60°C if any salt precipitation is observed.
Solid Phase Adsorption Toxin Tracking (SPATT) is a biomimetic in-situ water monitoring tool that falls under an expanding umbrella of passive samplers. It serves to warn researchers of toxin-producing harmful algal bloom (HAB) developments early on. It has been popularized through its affordability, ease of use, and its ability to capture ephemeral events in marine, brackish, and freshwater environments. Its uptake of contaminants has been shown to be more similar than other sampling methods to that of aquatic species like bivalves, mussels, and clams. It provides an average bioavailable fraction of a toxin over deployment time that can be used to determine an overall toxin risk to organisms. The sampling period typically depends on the bioactivity at a site, ranging from 24 hours to 4 weeks in most cases.
A SPATT passively absorbs and desorbs extracellular compounds over its stretch of time at a sampling site; in an organism, a toxin would go through biochemical detoxification processes. Passive samplers have a higher sensitivity for more compounds and provide improved stability and preservation of these compounds within the resin. SPATT devices capture less commonly detected cyanotoxins (e.g. cylindrospermopsin) at lower concentrations than that of a grab sample (collected at one point in time). Grab samples are limited in scope and sensitivity, and underrepresent toxins like microcystin-LR, which is picked up very reliably through SPATT technology.
Uses HP20 that is widely applicable for many toxins.
Used to capture:
Set of three Solid Phase Adsorption Toxin Tracking (SPATT) Bags
Pre activated
Ready for deployment
HP20
83, On-nut 88/2 Prawet Sub-district, Prawet District, Bangkok, 10250, Thailand
Tel : 081-875-1869 , 02-328-7179
Email : hej@a3p-scientific.com
Copyright © 2024 A3P Scientific Co., Ltd. All rights reserved. Web by Mountain Studio
Privacy Policy | Terms of Use | Site Map